Some considerations concerning the homogeneity of the Atlanto-Scandian herring.
by
O. J. østvedt.

Introduction.
Several attempts ha been made to subdivide the AtlantoScandian herring race (Broch 1908, Johansen 1919, Schnakenbeck 1931, Ottelistad 1934, Runnstrom 1941). The result obtained in these investigations are partly contradictory. The study of meristic characters has not given any decisive evidence for a distinction of different races. From evidence revealed by the last years tagging experiments and studies of herring migration it is now generally agreed that the Atlanto - Scandian herring is one race.

However, in our studies of the dynamics of the herring population it is of basic importance to know if there exist components which, alfthough they cannot be distinguished by racial criteria, ought to be treated separately.

Different growth types in the Atlanto - Scandian herring.

mhrough intensive studies of herring scales Lea (1929) observed that the winter rings of scales from young herring taken in northern Norway were sharper than the winter rings of herring scales from the southern west coast. According to their main distributions Lea termed the two types: northern and southerm respectively.

On the basis of samples of young herring ($1 \frac{1}{2}$ years old) taken along the IForwegian weet coast, Runnstrøm (1936) has given further information with respect to the geographical distributions of the two types. In northern Nowway, on the Finnmark coast, 100 per cent of the young herring have the northern scale type. In the intermediateregion, between northem Norway and the More coast, the two types are mixed. On the south west coast about 90 per cent of the young herring have coastal rings of the southem type. From this evidence Runnsirgil Goncluded that the northern type of winter rings are formed in coastal waters of northern Norway and the southem type on the south Wost coast, thus sustaining Lea!s theory.

In the older age groups there is an increasing intermixing of the two types and in the spawning shoals both types are allways found toother. There seern, however, to be a dominance of the northern type on the northermost spawning banks.

Vertebral counts of the southern and the northern type.
According to Runnstrøm (1941) the mean Vertebral number of samples of small herring taken on the south west coast of Norway, is significantly higher than that of herring samples taken from the northern west coast. If this holds true, and the southern type is mainly recruited from the southern spawning grounds, one should expect the mean vertebral counts of this type to be significantly higher than that of the northerm type. In Table 1 are shown the mean vertebral counts for the southerm and the northern types of the year classes 1934 to 1950.

The means tend to be slightly lower for the southern type, but only within the year classes 1938, 1943 and 1945 there exist a significant differenco betwoen the mean vertebral counts of tho two typos.

Brom this evidence we must conclude that the two types cannot be scparated by the number of vertebrae. This is consistent with the result of analysis of vertebral counts of young herring with different scale types, shown by Runnstrøm (1941).

It is thus reasonable to assume that the two types originatc from the same main spawning areas. The differentiation of the types then occurs as a result of a different drift during the pelagic stage.

Growth rate and age at first spawning.
The difference in the structure of the winter rings of the southorn and the northern types is related to a different growth - rate (Runnstrgin 1936). Figure 1 shows the growth curves of different year classes for the southern and the northern types of herring. During the first years of life the southern type has a much greater growth increment than the northorn type.

The ago at first spawning is closely related to the growth of the herring. The fast-growing southern typo reachos maturity at a lowor age than the slow-growing northorn typo.

The age at first spawning can be dotermined by moans of the spawning rings of the scalcs. On the basis of samples of herring taken on the spawning grounds in the ycars 1946 to 1955 the moan ago at first spawning has been calculated for cach year class and growth type according to year of sampling. The rosult is shown in Table 2.

It should be mentioned here that the calculated mean age at first spawning is not the true mcan spawning age. The younger spawning groups of a year class have beon exposcd to fishing mortalities during more fishing seasons than individuals belonging to older spawing groups, and are thus reduced in numbers compared with later incoming spawning groups. The calculated mean age at first spawning must therefore be slightly too high.

When all individuals of a year class have attained sexual maturity one would expect that the calculated mean age at first spawning should be constant, if it is assumed that the mortality is now the same for all spawning groups of the year class. Figure 2 gives the variations in the mean age at first spawning for some year classes. As will be seon the mean age is not constant for any of the year classes. An analysis of variance of the mean age at first spawning for the year classes 1934 to 1945 showe that significant differences exist betweon the mean ages for the various yoars of sampling. This may bo ascribed to two main sources of errors, sampling methods and mistakes in the interpretation of the spawning rings. It might also be thet our presumption of the same mortality- rate for all spawning groups of a year class (when all individuals have attained sexual maturity) does not hold truc.

Howover, if we compare the grand mean ages for the different year classes, shown in Figure 3, we find that for the southerm type the mean age at first spawning has been nearly constant at about 4.4, over a long period of years. In contrast to this the year classes of the northern type show a decreasing mean age at first spawning from about 7.4 for the year class 1934 to 5.1 for the year class 1945. As seen from Figure 1 this may be ascribed to the increase in growth rate of the northern type of herring in this period.

Relative abundance of the southern and the northern types.
In Figure 4 the percentage ratios of the two types are shown for each age group and each year class, calculated from samples taken on the spawning grounds. The proportions of the two types show great fluctuations from year class to year class. In the older year classes, 1931 - 1939, the northern type is the dominant component. In the year classes after 1940 the southern type is usually the most abundant one.

In each year class the southern type dominates the younger age groups, in accordance with the difference in age at first spawaing. Owing to insignificant number the 3 years old are not included on the figure, but this age group concists alZmost exclusively of the southern type of herring.

The relative abundance of the two types seems to be related to the strength of the year classes. When comparing this figure with the relative strength of the year classes it is evident that nearly ali/strong year classes have a high proportion or the northerm type. The year classes 1934, 1937, 1943 and 1947 were especially rich. A rich year class is thus . mainly dependent of a strong influx of the northern type of
herring. This is especially noticeable for the year class 1937. The recruitment of the southern type must have been very weak this year compared with the northern type.

Further evidence that the northern bype is dominant in the rich year classes is drawn from observations of the growth increment and the geographical distribution of the various year classes. According to Marti (1956) the rich year classes have smaller growth increment and a more northerly distribution than the poor ones.

Conclusions:

The study of different scale types from the AtlantoScandian herring race has shown that we can distinguish between two main groups with different growth - rates.

The difference in rates of growth is an effect of different geographical distributions during the immature stage of Iife.

The two groups cannot be separated by the number of vertebrae and it seems reasonable to conclude that they are recruited froir the same main spawning area.

It is thus evident that the northern and the southern types cannot be defined as different races. However, the existence of these two types complicated our studies of the dynamics of the entire herring population.

Thus, the recruitment of the two types may differ significantly from one year class to another, and the two types attain sexual maturity at different ages. To give any prediction in fluctuations of the size of the mature herring stock, it is important to know the proportion of the two types in all the age groups and particulany those which comprise recruit spawners.

To obtain an accurate estimate of the rates of growth of a year class great care has to be taken to ensure that the proportions of the southern and the northern types in the samples are representative for the year class in question. During the inmature stage of life the geographical distributions of the two types are widely different and it may be necessary to treat the two groups separately.

The main exploitation of the Atlanto - Scandian herring race takes place on the mature part of the stock. As the southern and the northern types are recruited to the spawning stock at different ages, they are subject to different fishing mortalities in early years of life. A change in the fishing intensity will therefore influence the two sub-populations differently. This may provide a mean of study the effect of fishing upon the stock.

Iiterature.

Broch, Hj., 1908. Norwegische Heringuntersuchungen während der Jahre 1904-1905. Bergen Mus. Arb. 1908.

Johansen, A. C.s 1919. Co the large spring spawning herrings in the North-West European waters. Med. Komm. Havunderspg.: Koh., S. fisk, 5 (8): 1-56.
Lea, E. I929. The herring scale as a certificate or origin. Its applicability to race investigations. Rapp. Cons. Explor. Mer, 54 : 21 - 34.

Marti, J.J., 1956. Tundamental periods in the life cycle of the Atianto -Scandian herring. Trans. Knipowich polyar. Sci. Inst., 70 pp., inoskva 1956 (in Russian).

Ottestad, P., 1934. Statistical analysis of the Norwegian herring population. Rapp. Cons. Explor. Mers 88.

Runnstrom, S., 1936. A study of the life history and migrations of the Norwegian spring herring based on the analysis of the winter rings and summer zones of the scale. Rep. Norweg. Fish. Invest., 5 (2): I-103.

- 1941. Racial analysis of the herring in Norwegian waters. Ibid., $6(7)$: 1 - 110 .
Schnakenbeck, W., 1931. Zum Rassenproblem bei Cen Fischen. Zeitschr. f. Morph. u. økologi d. Tiere, 21 (3/4).

Table I.
Mean vertebral ounts of samples of southern and northern types of the year. lasses 1934-1950.

Year class	Type	Number	Mean	t	$\frac{p}{\text { less than }}$
1934	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{array}{r} 753 \\ 43 \end{array}$	$\begin{array}{r} 57.18 \\ .11 \end{array}$	0.653	0.5
1935	$\begin{aligned} & \mathbb{N} \\ & S \end{aligned}$	$\begin{array}{r} 545 \\ 42 \end{array}$	$\begin{array}{r} 57.22 \\ .21 \end{array}$		
1936	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{array}{r} 425 \\ 36 \end{array}$	$\begin{array}{r} 57.26 \\ .22 \end{array}$		
1937	$\begin{gathered} \mathbb{N} \\ \mathrm{S} \end{gathered}$	$\begin{array}{r} 1915 \\ 53 \end{array}$	$\begin{array}{r} 57.13 \\ .09 \end{array}$		
1938	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{array}{r} 1312 \\ 80 \end{array}$	$\begin{array}{r} 57.19 \\ .00 \end{array}$	2.338	0.02
1939	$\stackrel{\mathbb{N}}{S}$	$\begin{aligned} & 610 \\ & 100 \end{aligned}$	$\begin{array}{r} 57.26 \\ .23 \end{array}$?	
1940	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 435 \\ & 296 \end{aligned}$	$\begin{array}{r} 57.19 \\ .20 \end{array}$		
1941	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 266 \\ & 275 \end{aligned}$	$\begin{array}{r} 57.22 \\ .15 \end{array}$	1.217	. 2
1942	$\begin{aligned} & \mathbb{N} \\ & S \end{aligned}$	$\begin{aligned} & 154 \\ & 373 \end{aligned}$	$\begin{array}{r} 57.14 \\ .12 \end{array}$		
1943	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 2837 \\ & 1153 \end{aligned}$	$\begin{array}{r} 57.73 \\ .20 \end{array}$	2.96	0.01
1944	$\begin{aligned} & \mathbb{N} \\ & S \end{aligned}$	$\begin{aligned} & 2030 \\ & 1699 \end{aligned}$	$\begin{array}{r} 57.19 \\ .18 \end{array}$		
1945	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 350 \\ & 876 \end{aligned}$	$\begin{array}{r} 57.22 \\ .09 \end{array}$	2.89	0.01
1946	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 174 \\ & 925 \end{aligned}$	$\begin{array}{r} 57.20 \\ .23 \end{array}$		
1947	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 1436 \\ & 1548 \end{aligned}$	$\begin{array}{r} 57.17 \\ .17 \end{array}$		
1948	$\begin{aligned} & \mathbb{N} \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 557 \\ & 124 \end{aligned}$	$\begin{array}{r} 57.25 \\ .26 \end{array}$		
1949	$\begin{aligned} & \mathbb{N} \\ & S \end{aligned}$	$\begin{aligned} & 124 \\ & 304 \end{aligned}$	$\begin{array}{r} 57.27 \\ .24 \end{array}$,
1950	$\begin{aligned} & N \\ & \mathrm{~S} \end{aligned}$	$\begin{array}{r} 1400 \\ 1425 \end{array}$	$\begin{array}{r} 57.15 \\ .14 \end{array}$		

 goubtern types of herrang.

Fig.2. Mean ape at elret gpanhig for the nothern end the southem types of hermina of vartous year chactes, acoording to yent of samplins.

