
ICES CM 2006/M:13

An object-based approach to integration of software to support management and

reporting of marine ecosystem survey data.

Marek Ostrowski

An object-based software to support distributed databases and data reporting from

combined fisheries and environmental surveys is presented. The key abstraction of

this system is expressed as a generic station (data) object. The station object consists

of a nested data structure, to store a master record and a matrix of data cycles, and a

behavior to capture this data structure from a variety of input data formats. The

station objects are not a part of the main system, but are implemented as separate

runtime plug-ins or user-defined with XML scripts. This makes this system easily

adaptable to particular data collection needs of a given survey.

 Once the data are stored in the database, they are accessible through a set of generic

data protocols. Through these protocols, implemented with the COM technology, the

data are easily integrated with the user-end software on Windows, including GIS and

numerical computing environments.

Keywords: Marine Data Management, Object-based technology

Contact author:

Marek Ostrowski: Institute of Marine Research, P.O. Box 1870

5817 Bergen, Norway

tel: + 47 55 23 86 23

e-mail: mareko@imr.no

1. Introduction

Relational database management systems (RDMBSs) have seen the widespread

acceptance in management of marine survey data. However, the RDMBS model best

support traditional business applications, such as order processing, banking, billing

and online reservations. It can be a costly and slow solution, if applied to complex

science-derived data structures, such as satellite imagery or high-resolution marine

datasets, because of the fragmentation of ‘real world’ entities into many relations as

required to meet the physical data representations in the relational database

(Connolloy et al., 1999). For such data types, data management may by more

effective using an object data management system (ODBMS). At the most basic

level, an ODBMS may be regarded as an extension to file systems to store manage

and retrieve a collection complex data structures in one piece, without a need to

remap these data into relations. This offers benefits in terms of increased speed of

access and reduced complexity of interfacing to the data. In the research

environment, these features are of a particular value for the two groups of users:

applications programmers who write applications for in-house use and data analysts

who access the banked data through standard statistical/ data analysis/GIS software.

As the modern ODBMS architectures fully support network transparency and

client/server model in the same level as RDMBS, using these systems does not impair

in any way the collaborative use of data by organizations. A comprehensive though

somewhat dated review of ODBMS technologies may be found in (Cattell, 1994). To

learn the basics of the object-oriented data modeling, the reader is referred to (Booch,

1994).

This report introduces a reference implementation of an object-database, called

QuickSurvey (QS), which the author had developed incrementally in the years 1999-

2003 to support immediate needs of a small survey team responsible, among others,

for long-term stewardship of diverse physical and resource data collected during

routine marine ecosystem surveys of the Nansen Programme (Sætersdal et al., 1999).

The focus was on data types, which due to software/staff limitations were not used

beyond the immediate survey reporting objectives and were only preserved in their

originators formats, on tapes and CDROMs. These data included: underway

 2

weather/sea surface log, post-processed ADCP profiles, acoustic abundance from

echo integration, thermosalinograph data and chemical sampling. The QS databases

were populated from raw files generated automatically by various data logging

systems, from spreadsheets containing data entered manually, and sometimes from

outputs of various data reduction and quality assurance procedures carried out by

means in house developed software and scripts. Some of these files adhered to the

international and institutional standards, many others less so. The use of QS to bank

these data was experimental. Many datasets from the described period are still

available only as offline archives on CDROMs.

The data preserved with QS are much easier to access and use than those preserved in

flat files. QS provides data online, have a simple navigational interface to locate

surveys and various data types, produces subsets based on time, geographical box and

various station’s header criteria, does not depend on availability of the originators

firmware to access raw data, and provides a live access to the data from within the

scripting environments most frequently used in our laboratory (Excel, IDL).

2. Overview of the system

QS is a Windows-based software. Its task is to support management of marine

ecosystem survey data. The design of this software had two main goals: (1) to ensure

a functional model (software and operational procedures) to support a small research

team or institution to manage their data, and (2) provide an opened environment for

integration with end-user software, that is commonly used for survey reporting and

data-driven retrospective analysis.

2.1 The functional description of the system.

The functional diagram of the system is depicted in Figure 1. The system is used in

the following three domains: on research vessel, in an associated land-based

laboratory and is amenable for use from the Web. The aim of the ship-based

 3

subsystem is to capture new data to retrieve the already banked data to support

preparation of survey reports. The source data are generated by variety of sampling

and postpocessing operations aboard the vessel: automated log from underway

instruments, vertical casts and sampling at stations, or outputs from data reduction and

quality control procedures. Node A symbolizes the sources of onboard survey data.

Node B denotes the archive of flat files generated by these sources during a survey. If

QS is used, most of the data in B is subsequently uploaded to the onboard database

(Node C).

The data stored in the onboard database that are retrieved for survey reporting

purposes are denoted by Node D. After the survey completes, the updated database is

brought to the land-based laboratory (Node E), where it is deployed on a designated

server (Node F or G).

The survey-collected databases can be maintained on a single central server or they

can be distributed among several computers in the laboratory. The later choice is

represented in Figure 1, where Nodes F and G host different databases, perhaps

maintained by different research groups. The QS system serves small organizations.

Fellow researches, rather than database professionals, are responsible for hosting

databases related to their work. They may choose to keep the data on their own

workstations and be responsible their administration. This is the situation symbolized

by Nodes F and G.

Nevertheless, the data from all servers in the laboratory are available to all users.

Nodes J and I depict client machines, which access data from the databases located

on various servers. To assure the laboratory wide data integration, an XML registry

of serves and databases placed on the lab’s web server (Node H). This registry is

used by QS on the client machines to locate servers on the local net.

The QS system envisions a distribution of data to web based clients (Node K). For

security reasons a direct access to the database servers is not permitted. The data are

sent by means of compressed HDF files (NCSA, 2005). The QS software on the web-

 4

based client machine accesses the sent data in the same way, as if they were located in

an online database.

2.2 The system’s architecture

The QS system is characterized by four distinct components: the Physical Data Store

(PDS), which handles low-level disk and networking operations; Object Abstraction

Layer (OAL), which defines a high-level interface used for scripting and writing

applications, Application Layer (AL) containing the user-level applications integrated

with the base system, and Pool of Station Schemas (PSS), which contain modules

implementing schemas of concrete ocean data types (Figure 2). PSS is linked to OAL

dynamically, so new data schemas can be added once the system has been deployed.

2.2.1 The Object abstraction layer (OAL)

The central element of this architecture is the Object Abstraction Layer. Implemented

with the Microsoft’s Component Object Model (Orfali et al., 1996), it defines a high

level object interface through which the client software communicates with the

database. A great care has been taken to design that interface in such a way that it

hides from its user idiosyncrasies of the low-level database handling technologies. Its

syntax is concise. Using few lines of scripting code, the users gains access do

distributed data archives. For instance, the following Visual Basic script snippet is

used to accesses the first ADCP profile from a dataset that has been collected between

21º and 23ºN during survey in 2003, stored in a database named “HYDRO”:

Listing 1: Code example showing an access ADCP data from a remote database.

Set stations = DataBank.Repository(“HYDRO”).Datasets(“ADCP_2003411”)

stations.Open, “LATITUDE > 21.0 and LATITUDE < 23.0”

Set station = stations.CreateStation

stations.read station

dataCycles = station.DataBook.Sheets(“BT_VELOCITY”)

The key abstraction of the QS system is a generic data object, called Station. This

Station object consists of a data structure to store a master record and a matrix of data

 5

cycles, and a behavior to capture this structure from a variety of input data formats.

The schema of the Station object is shown in Figure 3. This schema is very generic to

accommodate many types of marine data: vertical profiles, sections of underway

recordings or time-series of moored instruments. It has a nested structure: the

sampling event level data are stored in the MasterRecord object while data cycles are

placed into one or more DataSheets. The concrete implementation of these structure

are not a part of the core system, but are dynamically linked to it by means of the

runtime plug-ins (Figure 2). The dynamic linking of schemas makes this system easy

adaptable to new types of ocean data categories. All that is required is to devise a

new plug-in for a new data category stemming from a code template provided with a

new system and the placement of that module in the PSS pool.

Another way to extend QS for a new ocean data category is providing its schema in

XML. This is a much easier method to handle by non-programmers, it but does not

include behaviors, which tell the system how to read the data from external files.

However, often the source data exists or can be exported to an Excel spreadsheet or

other software that supports scripting. In such cases, the data can be uploaded to the

database using a user script within such a program. Listing 2 demonstrates an XML

schema for a nutrient dataset, which was entered manually to a spreadsheet. Figure 4

demonstrates a view of same schema, compiled and merged with the dictionary of

existing Station schemas.

QS maintains access to the data at four hierarchical levels. The users access these

levels through navigation, similarly to accessing local disk files. The Station object is

at the bottom of this hierarchy. On the second level, all Stations of the same data

category are grouped into a collection termed a Station-set. On the third level, all

station-sets for all data types located in a database are contained in a Repository.

Finally, at the top level there is a DataBank, which consists all Repositories registered

for use on a local network. This four level hierarchy is fully reflected in the scripting

mode (Listing 1) and in the QS user interface (Figure 6).

 6

2.2.2 The Physical Data Store (PDS)

At the physical level QS uses two independent software engines: The FirebirdSQL

RDMBS (Firebird, 2006) and Hierarchical Data Format library version 5 (HDF5),

(NCSA, 2005).

Despite of the RDMBS engine used, the QS system does not use relational model.

The basic building blocks of that model: the record and table are utilized to hold the

principal QS objects the Station and Station-set. The arrays, which Station object

uses to store data cycles, are mapped into Binary Large Objects (BLOBS) held

together with non-array master record fields in the same physical record of the

relational database.

The mapping of the QS data structures to the HDF5 format is direct. The HDF stored

data can be recovered using standard tools on the NCSA website. However, no data

selection capability exists for data objects held in these files. Due to a better

performance and compactness, this form of storage is best suited to create temporary

data subsets downloaded from the main database for an offline data analysis. These

files are also used for transfer of data subsets across the web.

2.2.3 The Application Layer

The application layer consists of the following modules: Database administration

software, scripting interfaces to standard computing environments and ActiveX

controls for building the database centric applications. The database administration

software is distributed with the base system. It includes tools for definition of new

Station objects with XML, for creation and maintenance of station-sets and for

generic data access. These programs have basic functionality. Currently, this module

consists of three such programs depicted in Figures 5 and 6.

 7

The scripting interface is the essential feature of the QS system. The users use QS

from their preferred software interactively or by writing short programs. Many

industry-standard programs support COM scripting. Excel is one such platform.

Other examples include: ArcGIS (Razavi, 2006), and Statistica (StatSoft, 2006). An

interface to access QS-stored data using Interactive Data Language (IDL), (ITT,

2006) is provided with the basic distribution of the QS system.

QS supports ActiveX Controls for building data-centric applications. These are visual

components that can be inserted in other applications to extend their functionality

(Microsoft, 2006). The QS ActiveX provides components for database navigation and

access. These have been applied to derive the database administration tools. A

complete CTD database and quality control system for use in the Nansen Programme

(Ostrowski, 2006) has been implemented with en early version of QS.

3. Conclusions

The paper touched on the issue of integration of various pieces of software to support

management and reporting of marine data. A custom developed piece of software

called QuickSurvey (QS) was presented. This software addressed one fragment of

activities connected to data management and reporting: that of preserving survey data

of diverse categories, storing them under the hood of a single database management

system, and distributing online to the users from the parent laboratory and on the

Web.

 The application of the object-based database concept proved to be advantageous to

the task at hand. A generic station (data) object had a potential to accommodate a

broad spectrum of survey data categories such as vertical profiles, underway

recording or time-series. The concrete implementations of that object were derived in

a computer code or using XML. The changes to the object schemas did not affect the

data model of the underlying database engine; and hence QS could be used without

modifications to the core system for banking and online distribution of very diverse

ocean data types, not envisioned during the system’s design phase.

 8

The application of the Common Object Model technology opened QS for

interoperation with the industry standard tools used for survey reporting, such as GIS

and numerical computing environments. It is suggested that once QS is used

according presented functional model, the users of those programs will be able to gain

access to life data for very diverse data categories from the distributed data archives

maintained in their organization.

REFERENCES

Anonymous, 2006. Report on The Joint Research Between Indonesia and Norway on
the Earthquakes and Tsunami Impacts in Aceh and west Sumatra., LIPI,
Jakarta.

Booch, G., 1994. Object-Oriented Analysis and Design. The Benjamin/Cummings

Series in Object-Oriented Software Engineering. The Benjamin/Cummings
Publishing Company, Inc., 589 pp.

Cattell, R. G., 1994. Object Data Management : Object-Oriented and extended

Relational Database Systems. Addison-Wesley, 389 pp.

Connolloy, T. M., Begg, C. E., Strachan, A., 1999. Database Systems. A Practical

Approach to Design, Implementation, and Management. Addison-Wesley,
1094 pp.

Firebird Project, (2006, August 15), Firebird - Relational Database for the New

Millennium, [WWW Document], See http://www.firebirdsql.org/

ITT Industries Inc., (2006, August 15), IDL The Data Visualization and Analysis

Platform, [WWW Document], See http://www.ittvis.com/idl/

Microsoft Corporation, (2006, August 15), Description of ActiveX Technologies,

[WWW Document], See http://support.microsoft.com/kb/154544/EN-US/

The National Center for Supercomputing Applications, University of Illinois at

Urbana-Champaign, (2005, October 31), HDF5 - A New Generation of HDF,
[WWW Document], See http://hdf.ncsa.uiuc.edu/HDF5/doc/

Orfali, R., Harkey, D., Edwards, J., 1996. The Essential Distributed Objects Survival

Guide. John Willey & Sons, Inc, 604 pp.

 9

http://www.firebirdsql.org/
http://www.ittvis.com/idl/
http://support.microsoft.com/kb/154544/EN-US/
http://hdf.ncsa.uiuc.edu/HDF5/doc/

Institute of Marine Research, Status of Hydrographic data with the Nansen
Programme, [WWW Document], See http://mareko.net/SM/QC.pdf

Razavi, A. H., 2006. ArcGIS Developer's Guide For VBA. Onward Press, 188 pp.

Sætersdal, G., Bianchi, G., Strømme, T., 1999. The Dr. Fridtjof Nansen Programme

1975-1993. FAO Fisheries Technical Paper 391. FAO, Rome, pp. 434.

StatSoft, (2006, August 15), Statistica Visual Basic, [WWW Document], See

http://www.statsoft.com/uniquefeatures/visualbasic.html

 10

http://mareko.net/SM/QC.pdf
http://www.statsoft.com/uniquefeatures/visualbasic.html

</xml>

<xml>

</xml>

<xml>

A

B C

D

E

F

H

I J

K

Legend:

HDF dataset

Database repository

Source data (flat file)

Group workstation

Onboard server

Lab’s web server

Client computer

</xml>

<xml> Data dictionary (XML)

Legend:

HDF dataset

Database repository

Source data (flat file)

Group workstation

Onboard server

Lab’s web server

Client computer

</xml>

<xml>

</xml>

<xml> Data dictionary (XML)

G

HDFHDF

HDFHDFHDF

SHIP

LAND-BASED LAB

WWW

Figure 1. Domains of operations the QuickSurvey system.

Object Abstraction Layer

RDMBS engine HDF engine Physical Data
Store

Application
Layer

Database
administration
software.

Scripting interface to
standard
computing
environments

ActiveX
controls to
build custom
applications

Pool of
Station

Schemas

Figure 2. The architecture of the QuickSurvey object database.

 11

Count As Integer

Sheets(i As Variant) As IDataSheet

Edit As Boolean

ActiveSheet As IDataSheet

Sub Activate(sheetName as String)

IWorkbook

MasterRecord As IPropertySequence

Coordinates As ICoordinates

DataBook As IWorkbook

Plugins As IPluginList

IStation

Schema As IObjectID
DataCount As Integer

RowCount As Integer

ColumnCount As Integer

Columns(i as Variant) As IDataColumn

Cells(row as Integer, col as Integer) As Variant

Name As String

IDataSheet

Sub pushData(data As Variant)

Sub pullData(data As Variant)

Count As Integer

Element(i As Variant) As Variant

Name(i As Variant) As String

Format(i As Variant) As String

Text(i As Variant) As String

DataType(i As Variant) As Integer

Unique(i As Variant) as Boolean

Inventory(i As Variant) as Boolean

Group(i As Variant) as Boolean

IPropertySequence

+

Figure 3. The QuickSurvey Generic Station Object expressed by set of COM
interfaces. The red arrows point from the owner to subordinate objects. The “+” sign
denotes a one-to-many ownership. The black arrows denote object’s properties: the
double and left pointed arrows denote the read/write and read-only properties,
respectively.

 12

Table 1. First three stations from nutrient dataset off Western Sumatra onboard
R/V Baruna Jaya VIII in August 2005 (Anonymous, 2006).

Depth Lat Long Time pH O2, ml/L NO3, µg A/L PO4, µg A/L SiO3, µg A/L TOM, % w/w Date

0 05.18.431 96.40.037 10 8.08 4.18 0.99 0.61 3.77 1/8/2005

25 8.1 4.12 0.54 0.52 4.22

50

75 8.13 3.84 2.77 0.43 9.52

100 8.16 3.02 7.24 0.7 28.19

200 8.17 1.09 24.37 2 33.13

300 8.22 0.86 25.9 2.26 36.36

400 8.28 0.84 27.07 0.83 37.7

0 05.18.422 96.17.939 15.05 8.02 4.26 1.05 0.22 5.57 1/8/2005

25 8.04 4.17 0.99 0.3 4.94

50 8.06 4.03 1.01 0.35 4.13

70 8.09 3.9 2.04 0.26 5.3

0 05.30.120 96.00.033 19.25 8.01 4.2 0.39 0.22 4.58 1/8/2005

25 8.03 4.18 0.35 0.22 4.85

50 8.05 4.16 1.63 0.52 3.77

75 8.09 3.63 2.14 1.26 4.76

100 8.1 2.68 9.75 2.26 11.04

200 8.09 0.87 23.77 2.48 26.57

300 8.1 0.84 25.82 2.48 32.14

400 8.1 0.82 26.08 3.09 35.46

500 8.11 0.77 26.93 2.91 41.11

Listing 2. Station object schema of the nutrient dataset shown in Table 1.

 <?xml version="1.0" ?>
- <Schema ID="CHEM_BJVIII" VER="1.0">

- <Header>
 <Description>Nutrients BJVIII</Description>
 <Creator>Marek Ostrowski</Creator>
 <Date.Stamp>20050820</Date.Stamp>
 <Comment>A schema for nutrient data analyzed

on Baruna Jaya VIII off Sumatra in August 2005.
 </Comment>

 </Header>
- <!--
 This is the master record
 -->
- <Master>

- <Field ID="SURVEY_NO" TYPE="INT">
 <Unique />
 <Summary />

 </Field>
- <Field ID="DATE_TIME" TYPE="DATE">

 <Inventory />
 <Unique />
 <Summary />

 </Field>
- <Field ID="SHIP_CODE" TYPE="INT">

 <Unique />
 </Field>
 <Field ID="COUNTRY_CODE" TYPE="INT" />
- <Field ID="PROJECT_ID" TYPE="STRING">

 <Summary />
 </Field>
- <Field ID="LATITUDE" TYPE="LAT">

 <Inventory />
 <Summary />

 </Field>
- <Field ID="LONGITUDE" TYPE="LON">

 <Inventory />
 <Summary />

 </Field>
- <Field ID="STATION_NO" TYPE="INT">

 <Inventory />
 </Field>
- <Field ID="BOTTOM_DEPTH" TYPE="FLOAT">

 <Inventory />
 <Format DEF="%4.0f" />

 </Field>
 </Master>
- <!--
 These are mandatory mappings for a profile
 -->
- <Coordinates>

 <Station REF="STATION_NO" />
 <Latitude REF="LATITUDE" />
 <Longitude REF="LONGITUDE" />
 <Date REF="DATE_TIME" />
 <Depth REF="BOTTOM_DEPTH" />

 </Coordinates>
- <!--
 These are the data cycles to the dababase
 -->
- <Sheets>

- <Sheet ID="DATA">
 <Column ID="DEPTH" FORMAT="%6.3f" />
 <Column ID="PH" FORMAT="%6.3f" />
 <Column ID="O2" FORMAT="%6.3f" />
 <Column ID="NO3" FORMAT="%6.3f" />
 <Column ID="PO4" FORMAT="%6.3f" />
 <Column ID="SiO3" FORMAT="%6.3f" />

 </Sheet>
 </Sheets>

- <!--
 These is a read-only version of the data cycles
 in the database. In this simple case these are
 the same as the Sheets

 -->
- <Views>

- <View ID="DATA">
 <ColumnRef ID="DEPTH" />
 <ColumnRef ID="PH" />
 <ColumnRef ID="O2" />
 <ColumnRef ID="NO3" />
 <ColumnRef ID="PO4" />
 <ColumnRef ID="SiO3" />

 </View>
 </Views>

 </Schema>

Figure 4. Visual representation the station schema from Listing 1 inside of
window of the schema definition program distributed with the QS system..

 14

Figure 5. Screen shot from the application to define schemas of the stations objects
storable to QS databases. The panel to the left displays the editor used to define an
XML schema for a new station object; that to the right shows the resulting schema
after compilation and registration with the system.

Figure 6. Two principal applications for database administration and data access. To
the left: the database administrator program showing lists of repositories (top-left)
and station-sets for different data types (bottom left). To the right: the basic data
exploration program displays a view showing the data for a selected station. Other
views include inventory of stations for the opened station-set, and a sheet to extract
horizontal layers from vertically profiled data.

 15

	Theme Session on Environmental and fisheries data management, access, and integration (M)
	An object-based approach to integration of software to support management and reporting of marine ecosystem survey data. ICES CM 2006/M:13
	1. Introduction
	2. Overview of the system
	2.1 The functional description of the system.
	2.2 The system’s architecture
	2.2.1 The Object abstraction layer (OAL)
	2.2.2 The Physical Data Store (PDS)
	2.2.3 The Application Layer

	3. Conclusions
	REFERENCES
	Figures and Table

