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Abstract 

The NORWECOM ocean model system implemented with the ROMS ocean circulation 

model has been run to simulate conditions over the last 25 years for the North Atlantic. 

Modelled time series of volume fluxes, primary production and drift of cod larvae through 

their modelled ambient temperature have been analysed in conjunction with observational 

based VPA estimated time series of 3-year old cod recruits in the Barents Sea. Individual time 

series account for less than 50% of the recruitment variability, however a combination of 

simulated inflow of Atlantic water and primary production accounts for 70% of the variability 

with a 3-year lead. The prediction indicates an increased recruitment from 2007 to 2008 from 

about 450 to 700 million individuals with a standard error of near 150 million. 

 

Keywords 

Ecosystem modelling, volume and larval transport, primary production, cod recruitment and 

prediction, Barents Sea 

 

 1



1.  Introduction 

A major issue in marine ecology is how food webs are controlled or regulated by their 

environment and human interference. This obviously has important implications for the 

management of marine resources, whether the issue is harvesting of marine resources or 

protection of species. Globally, second and third trophic level carnivorous fish such as cod are 

over-fished, forcing fisheries in many parts of world to harvest at lower trophic levels (Pauly 

et al. 1998). Moreover, the extreme variation in physical factors in northern waters, especially 

light, temperature, and ice cover, that occur over seasonal, inter-annual and longer time-

scales, cause major fluctuations at all trophic levels of the food web. Thus there is no such 

thing as an “ecological balance” on these time-scales. Knowledge of the ecosystem dynamics 

is required to make proper evaluation and prediction of the impact of fishing on a marine food 

web, and a fundamental challenge in this context is to determine the interaction between large 

natural variations and the impact of man. Due to the complexity of this challenge, it can only 

be explored by an extensive use of mathematical models in combination with observations. 

The Norwegian modeling community has recently made significant progress in ice-

ocean physical-chemical-biological numerical modeling (e.g., Budgell, 2005; Vikebø et al., 

2005, see also Data and Methods). The modeling system includes physics from a Regional 

Ocean Model System (ROMS, Shchepetkin and McWilliams, 2005), three macro-nutrients 

(N, P, Si), primary production of diatoms and flagellates, and secondary production of 

Calanus finmarchicus, which is the main zooplankton species in the Northeast Atlantic. One 

of our main goals is to use these modeling activities in an ecosystem approach to marine 

research and management, and examples are given on how quantified knowledge of the 

physics and lower trophic levels impact and allow predictability of fisheries recruitment and 

migration. 
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There are many opinions about what an ecosystem approach to marine research and 

management, or to fisheries management, means. With respect to research, we choose to 

define it as an approach towards “considering the most important driving forces on and the 

processes within the ecosystems”. While there are many important processes involved, the 

two main driving forces on most ecosystems related to the northern North Atlantic are climate 

(or the physics), and fishing. In some areas fertilization, pollution, introduction of new species 

and/or habitat disturbance may also be important drivers, but so far none of these are 

considered important in relation to the fish stocks in the Nordic and Barents seas.  A 

simplified food web of the arctic/subarctic food web in the Barents Sea is shown in Fig. 1. 

 The Barents Sea ecosystem is considered relatively simple because of low species 

diversity and because temperature change directly or indirectly influences most species. This 

means that higher temperature normally is associated with increased productivity, not 

necessarily due to the temperature itself, but because this may be related to less ice coverage 

and/ or increased inflow of relatively warm Atlantic water being rich on nutrients and 

sometimes plankton. In spite of this, there are many processes, in particular linkages between 

trophic levels, which are quantitatively poorly known. Thus, it is quite problematic to 

consider all relevant processes and state variables in such a system. Another approach is to 

focus on a particular species or functional group in the ecosystem, and determine what is 

directly or indirectly affecting it’s struggle for growth and survival. This is exemplified in Fig. 

2. 

 Either way we end up with the same problem of several  (quantitatively) poorly known 

processes, but the research strategy indicated in Fig. 2 may be more attractive since it focuses 

on the target species of interest. It is important to notice that the climate/physics is an 

important direct driver on all trophic levels, and indirectly through its impact at the bottom of 

the food chain, namely the primary production. This is demonstrated by Skogen and Moll 
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(2005) who show that the physics imposes varying complexity on the formulation of 

biological processes. 

 Most attempts to establish relations between the environment and fish stock dynamics 

have simply dealt with temperature, largely because temperature has a direct impact on 

biological processes and is easy to measure. However, temperature might be a proxy for other 

processes that may have important impacts on the ecosystem, e.g. water transports or 

zooplankton (Campana and Hurley, 1989; Sundby, 2000). In this paper we focus on the early 

life stages of northeast arctic cod, assuming that this is a critical phase for determining year 

class strength. We consider possible relations between: 

- Physics and recruitment 

- Physics and primary production and recruitment 

- Physics and cod larvae drift/ growth and recruitment 

Lastly we examine the predictability of cod recruitment, while acknowledging our lack of 

information on cod predation mortality. Similarly and unfortunately, the development of a 

zooplankton module has been delayed, and it may also have a significant effect on cod 

recruitment not captured by the above indicators. 

The northeast arctic cod spawns along the Norwegian coast from mid to northern 

Norway during March and April (Ellertsen et al., 1989). Main spawning areas are found in the 

Lofoten region where 40-70% of the eggs are spawned (Fig 3). Most of the first-feeding 

larvae are found in the Lofoten region in early May when they start feeding on the early 

naupli stages of Calanus finmarchicus. During the subsequent months of pelagic drift they are 

transported northeastwards to the Barents Sea, mainly by the Norwegian Coastal Current but 

also partly by the Atlantic Current, in the upper layer (top 30 m). The cod gradually switch to 

feed upon older and larger naupli and copepodite stages (Sysoeva & Degtereva, 1965; Helle, 

1994). In June-July they are found as early juveniles (30 – 50 mm long) at the entrance of the 
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Barents Sea and the year-class strength is largely determined at this stage (Sundby et al. 

1989). The largest larvae are found in the western Barents Sea and the smallest larvae in the 

east (Bjørke and Sundby, 1986). The same authors suggested that this was due to the larvae in 

the western part drifting in higher temperature waters and/or in areas with higher food 

abundance. Using otolith analyses, Suthers and Sundby (1993) confirmed that this was due to 

more rapid growth in the west, a result confirmed by modeling studies (Vikebø et al., 2005).  

Temperature fluctuations have been shown to have a strong influence on year-class 

strengths of northeast arctic cod in various ways. Sæterdal and Loeng (1987) found that strong 

year classes normally occur at the beginning of warm periods in the Barents Sea. Ellertsen et 

al. (1989) showed that strong year classes may occur in warm years while cold years always 

result in poor year classes of cod, leading to the conclusion that a high temperature was a 

necessary but not sufficient condition for strong year classes. Ottersen and Sundby (1995) 

found that temperature and spawning stock biomass were equally important in the year-class 

formation of cod. Ottersen and Loeng (2000) observed a positive correlation between year of 

strong year classes and large individuals at the 0-group stage (5 months old prior to settlement 

out of the pelagic layer). 

 

2.  Data and Methods 

2.1  Fisheries data 

A time series of the 3-year old northeast arctic cod recruits in the Barents Sea is taken 

from ICES (2005) that reports the results of a catch-at-age analyses (VPA; Virtual Population 

Analysis) based on all reported catches. The estimates of the last 3-4 year-classes are 

considered more uncertain than earlier year-classes where the full stock cohort is used in the 

analysis. Recruits for 2003-2005 is therefore not used in the statistical analysis (Stiansen et al, 

2005). The uncertainties in the fisheries data are not further considered. 
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2.1  Physics 

The physical model is the Regional Ocean Model System (ROMS) (Shchepetkin and 

McWilliams, 2005). The model is 3-dimensional, baroclinic and contains a free surface. The 

model uses a finite difference numerical scheme with time splitting, orthogonal curvilinear 

coordinates in the horizontal and terrain-following coordinates in the vertical.  It contains a 

dynamic-thermodynamic ice submodel (Budgell, 2005) that uses an elastic-viscous-plastic 

rheology following Hunke and Dukowicz (1997) and Hunke (2001) and ice thermodynamics 

based on Mellor and Kantha (1989) and Häkkinen and Mellor (1992).  The model is driven by 

6-hourly atmospheric forcing obtained from NCEP Reanalysis data provided by the 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.cdc.noaa.gov/), including 

wind stress recently found to be too high especially during strong wind conditions (Budgell, 

pers. comm.). Some validation is presented in Budgell (2005) 

 

2.3  Primary production 

The NORWegian ECOlogical Model system (NORWECOM) is a coupled physical, chemical, 

biological model system (Aksnes et.al., 1995; Skogen et al., 1995; Skogen & Søiland, 1998) 

applied to studies of primary production, nutrient budgets and dispersion of particles, such as 

fish larvae and pollution. The model has been validated by comparison with field data in the 

North Sea/Skagerrak (Svendsen et al., 1996; Skogen et al., 1997; Søiland & Skogen, 2000 and 

Skogen et al. 2004, among others). These demonstrate that the model capture the typical 

spring bloom of diatoms and the following blooming of flagellates. It also agrees well with 

the seasonal cycle of nutrients and more rapid events related e.g. to coastal upwelling.  

Validation is also ongoing in the Nordic and Barents seas (Skogen et al., pers. comm.). 
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The chemical-biological lower trophic model is coupled to the physical model through 

the subsurface light, the hydrography and the horizontal and the vertical movement of the 

water masses. The prognostic variables are dissolved inorganic nitrogen (DIN), phosphorous 

(PHO) and silicate (SI), two different functional groups of phytoplankton (representing 

diatoms and flagellates), detritus (dead organic matter), diatom tests (biogenic silica), 

inorganic suspended particulate matter (ISPM) and oxygen. Primary production, respiration, 

algal death, remineralization of inorganic nutrients from dead organic matter, self shading, 

turbidity, sedimentation, resuspension, sediment burial and denitrification are modelled. 

Phytoplankton mortality, including grazing, is everywhere and at any time assumed to be a 

constant fraction of the modeled phytoplankton biomass. (A more realistic mortality is 

assumed to be achieved when coupling to a zooplankton module is available). 

Particulate matter has a sinking speed relative to the water and may accumulate on the 

bottom if the bottom stress is below a given threshold (0.064 Pa), and resuspension takes 

place if the bottom stress exceeds a threshold (0.78 Pa). Remineralization takes place both in 

the water column and in the sediments. Parameterization of the biochemical processes is taken 

from literature based on laboratory and mesocosm experiments, or deduced from field 

measurements (Aksnes et al., 1995; Pohlman & Puls, 1994; Mayer, 1995; Gehlen et al., 1995; 

Lohse et al., 1995,1996). 

The lower trophic model is run off-line, i.e., it is forced with the 3-day mean results 

from the physics model. To minimize the boundary effects on the model results, a 7 grid cell 

"Flow Relaxation Scheme" (FRS) zone (Martinsen & Engedahl, 1987) is used on the open 

boundaries. 

 The incident irradiation is modeled using a formulation based on Skartveit & Olseth 

(1986, 1987) using data for global daily downward shortwave radiation from the 

NCEP/NCAR reanalysis data set. The nutrient fields are reinitialised every January 1 using 
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typical values for winter nutrients of Atlantic Water in the Norwegian Sea (F. Rey, pers. 

comm), together with some small initial amounts of algae (0.10 mgNm-3) for  both diatoms 

and flagellates. Inorganic nitrogen is added to the system from the atmosphere as a constant 

value in time and space, but with double values along the coasts. In this large-scale model 

setup, no nutrients is added to the freshwater runoff (assumed to be unimportant for the 

present study).  

 

2.4  Larval cod growth and distribution 

The drift of cod eggs and larvae is simulated using the current and temperature fields 

from ROMS. Initially the physics were available only for the years 1985-1997, but later 

extended for the full 25-year period. A total of 50,000 particles are released each year and 

tracked from 1 March to 31 September. Spawning is assumed to be normally distributed 

between 1 March and 30 April, with a standard deviation of 15 days. The particles are 

released in the spawning areas of northeast Arctic cod in the Lofoten area (70%) and Møre 

(30%) at random depths between 0 and 20 m. Depths are maintained fixed for particles 

throughout the simulations. Particle movement is calculated at hourly time steps by Runge-

Kutta integration from 3D interpolation of the velocities from ROMS. A diffusion term 

corresponding to a Fickian coefficient of 100 m2s-1 (Ådlandsvik & Sundby, 1994; Torgersen 

& Huse, 2005) is added to represent sub-grid scale physical processes. 

 

2.5  Statistics 

Monthly and seasonally inflows are correlated with age 3 cod recruitment, with lags of 

0-6 years (inflow preceding recruitment). Recruitment is also correlated with primary 

production for the total Barents Sea for the months April-August and with the total annual 

production. Correlations with primary production were also looked for around the spawning 
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areas, along early larval drift routes, and in sub-areas of the Barents Sea. The primary 

production and inflow time series having the highest correlations with a time lag of 0-3 years 

were tested in a multiple linear regression analysis using the SPLUS statistical program. The 

time lag of 3 years both for the inflow and the primary production were finally chosen by the 

authors both since it gave the best statistical results and since it represents the first year of life 

of the cod, which is the stage believed to be most affected by the environment.  

 

 

3.  Results and Discussion 

3.1  Physics and recruitment 

The ROMS model was run for the period 1981-2005 covering an area from about 20°-30°S in 

the Atlantic to the Bering Strait, including the whole Arctic. Of special importance for the 

Barents Sea ecosystem is the inflow of relatively warm and nutrient rich Atlantic water (Fig. 

4). While the annual mean total inflow typically varies around 4 Sv, the seasonal variation 

typically ranges from 2 to 6 Sv. From fixed current meter mooring arrays, Ingvaldsen et al. 

(2004) estimated net Atlantic water inflow to the Barents Sea through the Fugløya-Bjørnøya 

section to be 1.7 Sv during winter and 1.3 Sv during summer for the period August 1997 to 

July 2001. These results do not include the transports in the Norwegian Coastal Current which 

may be of a similar magnitude. Still, the numerical model results (including Norwegian 

Coastal Water) probably overestimate this inflow, although the seasonal and interannual 

variability seems reasonable (Budgell, 2005). This overestimation is caused by too high wind 

stress forcing recently found in the NCEP data (Budgell, pers. comm.). Although a positive 

link to the cod recruitment from the inflow during winter or spring was anticipated, no such 

strong links were found. Instead, a negative strong relation between the total inflow in the 4th 

quarter and the recruitment of 3-year old cod 3 years later was found (Fig. 5). 
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At present no clear explanation for this negative relation is given, but a possible 

interpretation is that it is positive for the recruitment that the food for the juvenile cod 

becomes more stationary (with weaker currents) in areas where the cod is assumed to become 

stationary at the bottom. Another hypothesis could be that juvenile cod is not as stationary as 

assumed, and with strong flows the juvenile cod drifts too far eastward in the Barents Sea. 

During winter and spring it may then be hit by extremely cold bottom water formation (due to 

surface cooling) causing high mortality. 

 

3.2  Physics and primary production and recruitment 

The primary production model linked to the physical oceanography from ROMS was run for 

the same area and period (1981-2005). Figure 6 demonstrates the annual production for the 

Northeast Atlantic.  Although river nutrients were not included, we believe that the variability 

for the larger Norwegian and Barents seas due to varying weather affecting inflow, light, 

stratification, turbulence and ice conditions, may be well represented (Skogen et al., in prep.).  

This is also based on experience and validation exercises from the North Sea (Svendsen et al., 

1996; Skogen et al., 1997; Søiland & Skogen, 2000; Skogen et al. 2004). In particular the 

effect of varying ice cover has a significant effect on the northern Barents Sea production due 

to its major effect on light penetration. 

An examination of the monthly production and the recruitment shows the best 

relations are found in April (Fig. 7). The modelled production in large areas of the Barents 

Sea correlates highly (r2≈0.5) with the recruitment (three years later). However, areas of high 

correlation is also found far to the south, which may indicate that this is related to the larger 

weather patterns influencing similarly the production over larger areas. No strong relations 

were found in the areas of spawning and early larval drift routs in the Norwegian Sea. About 

35% of the cod recruitment variability is accounted for by the primary production of the total 
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Barents Sea during April, as shown in Fig. 8. It is quite logic that this early part of the spring 

bloom mainly of diatoms may be an important factor in the ecosystem dynamics leading to 

good recruitment 

By combining the inflow in the 4th quarter with the primary production in April (the 

same year) for the whole Barents Sea, we are able to explain about 70% of the recruitment 

variability of 3-year old cod (Fig. 9). Since the inflow estimates and primary production are 

simulations for the spawning year of the recruits, this gives a prediction of cod recruitment 3 

years prior. 

 

3.3   Physics and cod larvae drift/ growth and recruitment 

Cod recruitment is also assumed to be affected by larval growth and drift patterns (Vikebø et 

al. 2005). The ambient temperature has a significant effect on larval growth rates. Although 

growth is also affected by food availability, lacking the necessary prey availability, we were 

forced only to considering the effects of ambient temperature. We found that he larvae may 

encounter quite drastic temperature differences (up to 4 0C) from year-to-year (Fig. 10), which 

may have a significant effect on the growth and survival rate. Initially only the 13 year period 

1985-1997 were studied, and indeed we found that the average ambient temperature during 

the first half year of the larval drift could explain near 50% of the recruitment (3 years later). 

This relationship was stronger than earlier temperature-recruitment studies have shown, which 

basically indicated that high temperature is just a necessary condition for good recruitment 

(Sundby, 2000). However, when the full 25-year simulation period became available, this 

relation was destroyed basically by the 1983 and 2003 year-classes, with respectively 

relatively good/bad recruitment in spite of quite cold/warm ambient temperatures. It should be 

stressed that until we also are able to realistically simulate the food availability for the larvae, 

in particular the amounts of C. finmarchicus, such studies will be incomplete. A recent 
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simulation study (Torgersen & Huse, 2005) has shown that 1990 was the peak year in 

advection of C. finmarchicus from the Norwegian Sea to the Barents Sea during the high 

NAO period 1988-1991. This corresponds to the year with peak in ambient temperature of 

cod, which again corresponds to the strongest year class of cod in the period 1985-1997. 

Also the interannual variation of the amount of particles drifting into the Barents Sea 

was studied, but no strong relation to recruitment were found. It is assumed that with the poor 

model resolution of 20 km, the drift of larvae is not represented with sufficient accuracy. 

 

3.4  Predictability of cod recruitment 

The present basis for assessing and managing fish stocks are with few exceptions single 

species models where information about the environment and ecosystem is not included 

quantitatively. Stock assessments based on traditional tools are known not to be capable of 

capturing changes in abundance trends before 3-5 years after a change. Knowledge on 

ecosystem dynamics and its influence on fish stocks can help in assessing stock dynamics 

with the potential of supplying early warnings of rapid changes (Svendsen et al., 1995; 

Iversen et.al., 2002; Huse & Ottersen 2003; Ottersen et al., 2002; Stiansen et al., 2002; 

Stiansen et al., 2005).  Based on temperature observations from the Russian Kola section, 

survey estimates of 1-year old cod and maturing capelin biomass, Stiansen et al. (2005) have 

demonstrated a 2-year prediction (R2=0.81). This predicts a drop in recruitment from 2005 to 

2006. A similar drop of about 200 million individuals is predicted from the relation with 

modelled inflow of water to the Barents Sea and the primary production. This 3-year 

prediction is seen in Fig. 11, also showing the predictions for 2007 and 2008. Note that the 

last years’ VPA estimates (2003, 4 and 5) are quite uncertain due to the nature of VPA and 

have been omitted in the determination of the multiple regression model. The statistical 
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recruitment model equation is: ModRecCodt(3Y) = -240Inflowt-3(4Q)+40PPt-3(April)+1633 

with a residual standard error of 144 million individuals. 

Huse & Ottersen (2002) used Artificial Neural Networks (ANN) to predict recruitment 

and stock biomass of northeast arctic cod. Using temperature at the Kola section, capelin 

biomass (the main prey), and cod spawning stock biomass as input variables to the ANN, they 

provided a good 3-year forecast of recruitment (R2 = 0.76). Even though the aggregated time 

series used in ANN provide a fair predictive capability, the numerical models presented here 

should be capable of yielding a much better predictive capability, for example by describing 

the ambient temperature in a much more realistic fashion than by using fixed sections. The 

predictions from these new modelled time series are totally independent from the estimates by 

Stiansen et al. (2005). A test of the robustness of the predictions in Fig. 11 is done by 

retrospective runs of the regression model. This means recalculation of the model coefficients 

by cutting out first one, then two and up to 10 last years of the observations, and for each case 

re-calculating the predictions for the whole period. The results are shown in Fig. 12 

demonstrating remarkable robustness which indicates the stability of the coefficients in the 

statistical model. This indicates that the processes leading to the variability experienced 

during the first 10 year are similar for the following 10 years. If this is also the case for the 

last years, we may assume that our predictions are realistic. 

 

4.  Conclusion 

 

Recruitment is the most important indicator of fish stocks to predict since it is used in 

fisheries assessment and, if it can be predicted ahead of time, for early warning of rapid 

changes. The numerical 3-dimensional simulations presented here of the ocean circulation, 

hydrography, primary production and larval drift have supplied new time series of state 
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variables or indicators which are not available from standard monitoring programs, and their 

links to recruitment with 3 year predictability is promising. For example, the predicted drop in 

recruitment from 2005 to 2006 is a clear indication of a development that should be taken into 

consideration in management advice, although fortunately the present predicted drop is not 

considered critical.  This drop was also suggested from an independent statistical model 

(Stiansen et al., 2005) lending further support to this new methodology. The recruitment 

prediction for 2008 is about 700 million with a residual standard error of 144 million. 

The predictions based on the coupled information of inflow and primary production 

appears robust and increase our confidence in the predictions as well as the choice of 

explanatory variables. It is clear that the weak link in this analysis is the lack of zooplankton 

information, being the critical food source for the growth and thus survival of the cod larvae 

and juveniles. It will also strengthen the work to do the analysis further back in time, but so 

far such modelling simulations are not available. Still the results indicate that as long as the 

cod spawning stock biomass (SSB) is above about 200,000 tonnes (which has been the case 

for most of this period), 70% of the recruitment variability seems to be caused by natural 

environmental variability. For comparison ICES has set Blim=220,000 being the lowest SSB 

assumed to have the potential of producing good recruitment. 
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Figure captions 

Fig. 1. Schematic of the typical food web in the Barents Sea 

Fig. 2. Sketch of (potential) important drivers and processes affecting growth, behaviour, 

reproduction and mortality. 

Fig. 3. Spawning and nursery grounds for the northeast arctic cod 

Fig. 4. Time series of the total modelled volume transport at the entrance into the Barents Sea 

(in Sverdrup; 1 Sv=106m3s-1) from January 1981 to December 2005. Monthly averages 

(thin pink line) and annual running mean (thick black line). 

Fig. 5.  Mean 4th quarter modelled total inflow of water through the Bear Island-Fugloya 

section at the western entrance to the Barents Sea versus recruitment of 3-year old cod, 

3 years later. 

Fig. 6.  Modelled annual (mean 1993-2004) total primary production (diatoms+flagellates in 

gCm-2). The numbered boxes indicate areas over which production was averaged to 

generate production time series, but only the average production of all boxes (the 

whole Barents Sea) were finally used. 

Fig. 7.  Correlation map between primary production in April and Cod (3Y) recruitment 3 

years later  

Fig. 8.  Recruitment of 3-year old northeast arctic cod (ICES, VPA) and primary production in 

April (NORWECOM/ROMS) in the total Barents Sea. 

Fig. 9.  Statistical model of 3-year old cod recruits based on dynamically modelled inflow of 

water to the Barents Sea (4th quarter) and primary production (for the whole Barents 

Sea) in April versus VPA estimates of the number of recruits (all individual p-values 

<0.02). 
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Figure 10. Modelled time series of ambient temperatures from individual years estimated 

from 50,000 particles released in well known spawning areas for cod starting March 1 

drifting randomly in the upper 20 meters with the modelled currents and temperature 

fields 

Fig. 11.  Northeast arctic cod recruitment (numbers of 3-year-olds) from VPA estimates (dark 

line) compared to prediction from  regression with dynamically modelled inflow of 

water to the Barents Sea (4th quarter) and primary production (for the whole Barents 

Sea) in April. 

Fig. 12 Individual multiple regression models of recruitment based on parameter estimation 

by deleting from one up to ten of the last years of VPA estimates (from 2002 and 

backwards). 
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Fig. 1. Schematic of the typical food web in the Barents Sea 
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Fig. 2. Sketch of (potential) important drivers and processes affecting growth, behaviour, 

reproduction and mortality. 
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Fig. 3. Spawning and nursery grounds for the northeast arctic cod

 24



 

 

2

3

4

5

6

7

8

9

10

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

Tr
an

sp
or

t (
Sv

)

 

Fig. 4. Time series of the total modelled volume transport at the entrance into the Barents Sea 

(in Sverdrup; 1 Sv=106m3s-1) from January 1981 to December 2005. Monthly averages 

(thin pink line) and annual running mean (thick black line). 
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Fig. 5.  Mean 4th quarter modelled total inflow of water through the Bear Island-Fugloya 

section at the western entrance to the Barents Sea versus recruitment of 3-year old cod, 

3 years later. 
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Fig. 6.  Modelled annual (mean 1993-2004) total primary production (diatoms+flagellates in 

gCm-2). The numbered boxes indicate areas over which production was averaged to 

generate production time series, but only the average production of all boxes (the 

whole Barents Sea) were finally used. 
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Fig. 7.  Correlation map between primary production in April and Cod (3Y) recruitment 3 

years later  
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Fig. 8.  Recruitment of 3-year old northeast arctic cod (ICES, VPA) and primary production in 

April (NORWECOM/ROMS) in the total Barents Sea. 
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Fig. 9.  Statistical model of 3-year old cod recruits based on dynamically modelled inflow of 

water to the Barents Sea (4th quarter) and primary production (for the whole Barents 

Sea) in April versus VPA estimates of the number of recruits (all individual p-values 

<0.02). 
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Figure 10. Modelled time series of ambient temperatures from individual years estimated 

from 50,000 particles released in well known spawning areas for cod starting March 1 

drifting randomly in the upper 20 meters with the modelled currents and temperature 

fields 
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Fig. 11.  Northeast arctic cod recruitment (numbers of 3-year-olds) from VPA estimates (dark 

line) compared to prediction from  regression with dynamically modelled inflow of 

water to the Barents Sea (4th quarter) and primary production (for the whole Barents 

Sea) in April. 
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Fig. 12 Individual multiple regression models of recruitment based on parameter estimation 

by deleting from one up to ten of the last years of VPA estimates (from 2002 and 

backwards). 
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