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Abstract 

 
Groundfish have a wide and variable distribution making the use of trawling alone a 
highly inadequate sampling method. Trawl data provide species identification and 
numbers over a very small area and habitat type while acoustic data provide a wider 
coverage of the ecosystem, but fail to identify species.  Both methods provide essential 
information required for assessing fish stock abundance and distribution, but no 
systematic method of combining these data has yet been identified. Acoustic and trawl 
data were collected for both the North and Barents Seas and their relationships 
investigated using artificial neural networks (ANNs). ANNs are information processing 
systems that were inspired by the structure of the brain. They can incorporate multiple 
variables and explore complex interactions between variables in far greater depth than 
many traditional statistical techniques. This modelling tool has had many successes in 
environmental modelling and is increasingly being applied in situations where the 
underlying relationships are poorly known. Network architectures, optimisation of 
connection weights (learning), model validation, and the reasons for the difference in 
performance between the North Sea and Barents Sea models are discussed. 
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1. Introduction 
 
Trawl and acoustic data each provide essential information for the accurate assessment of 

fish stocks. The identification, size, and age of fish are provided by the trawl data, and the 
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more precise location of fish and greater coverage of the ecosystem are provided by the 

acoustic data. These data cover different sections of the water column and have different 

geographical coverage making the use of either acoustic or trawl data alone highly 

limiting, but the combination of the two highly attractive.  However, a method for 

combining these data in a systematic way has yet to be identified. 

 

Artificial neural networks are an appropriate choice for the combination of acoustic and 

trawl data because the underlying relationships between the variables do not need to be 

known or programmed, but they are ‘learned’ iteratively by the network being supplied 

with a number of training examples from the data set (Lek et al, 1996; Basheer and 

Hajmeer, 2000; Maier and Dandy, 2000). Their success in such a vast array of predicting, 

classification, and control problems can be attributed to their capability to model 

extremely complex functions in heterogeneous data sets, with large numbers of variables, 

between which the relationships can be non-linear. Studies involving environmental data 

very rarely involve variables with linear relationships, although this linearity is 

commonly assumed by traditional statistical methods (James and McCulloch, 1990). 

 

Neural networks have been successfully applied to a variety of different problem types in 

a diverse range of subject areas including; engineering, medicine, geology, physics, and 

environmental science. In fisheries science there have also been a wide range of 

successful applications; forecasting fish stock recruitment (Chen and Ware, 1999), fish 

population counting (Newbury et al., 1995) and predicting daily fish food consumption in 

fish farming (Ruohonen, 1999), fish species recognition during trawl processing 

(Storbeck and Daan, 2001), and also species identification of acoustic data (Haralabous 

and Georgakarakos, 1996; Simmonds et al. 1996), prediction of stock abundance in 

capelin (Huse and Gjøsæter, 1999), and for analysing catch per unit effort/abundance 

relationships in tuna fisheries (Gaertner and Dreyfus-Leon, 2004).   

 

In this study, both acoustic and bottom trawl data are combined using artificial neural 

networks (ANNs). Ultimately the index produced by this combination could be used to 

improve the fish stock assessment process by providing more realistic estimates of stock 

location and size. This is because the area covered by the assessment surveys would be 

much greater and the number of data points much higher resulting in a reduced variance. 

The type of networks used are known as regression networks where the network learns 
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the pattern between the input variables and a continuous output variable. The 

combination of acoustic and trawl data in two different locations, the North Sea and the 

Barents Sea, are compared and discussed.  

  

2. Materials and Methods 

 

The two different locations used for this study were the North Sea between UK, France 

and south west Norway (56°N, 3°E), and the Barents Sea off the north coast of Norway 

(72°N, 25°E). Trawl, acoustic, and environmental data were collected during bottom 

trawl surveys in 2000, 2001, and 2002 for the North Sea and in 1997 –2002 inclusive for 

the Barents Sea.  

 

North Sea data 

 

In the North Sea, data were collected during the International Bottom Trawl  (IBTS) 

surveys carried out on board R.V. Cirolana in August of each year. Acoustic data were 

collected using a Simrad EK500 scientific echosounder with a hull mounted 38 kHz split-

beam transducer, and post-processed using Sonardata Echoview. Acoustic 

measurements were logged continuously during all three surveys, but only data collected 

during daylight hours were used for this study, in line with the IBTS protocol for daytime 

trawling (ICES, 1999). Weather conditions were variable during the surveys, and data 

collected during the most adverse conditions were discarded from the analyses. Standard 

IBTS protocols were observed (ICES, 1999). CTD data were collected during each trawl. 

Data from all three surveys were prepared using the same method described below and 

then combined. A total of 211 trawl stations were used in the analysis. 

 

Barents Sea data 

 

In the Barents Sea, data were collected on R.V Johan Hjort and G.O. Sars in February 

each year. Acoustic data were collected using a Simrad EK500 scientific echosounder 

with a 38 kHz transducer, and post-processed using Bergen Echo Integrator (BEI). 

Acoustic measurements were logged continuously during all surveys, and only daylight 

data used. Environmental data such as temperature and depth were collected throughout 
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the surveys. Data from all surveys were prepared using the same method and then 

combined. A total of 2973 trawl stations were used in the analysis. 

 

2.1 Data Preparation 

 

Acoustic Data 

 

Initial processing of acoustic data involved removing spurious data associated with rough 

weather, vessel turning, interference from other instruments, and excessive surface 

aeration, to ensure only high quality data were included. This was followed by sub-

dividing data into ‘on station’ and ‘interstation’ sections (Fig. 1). On station sections 

correspond to data collected during a tow where both acoustic and trawl data are 

available, and interstation data to the section of cruise track between trawl stations where 

only acoustic data are recorded.  

 

The line respresenting the seabed on the echogram was corrected by making adjustments 

where wrecks or fish aggregations had been included in the bottom signal, or where the 

seabed line had been recorded as below the actual seabed. A backstep was introduced of 

between 0.1 m in favourable weather conditions, to 0.5 m in those less favourable. This 

enabled the area very close to the seabed to be excluded which is vital where conditions 

have been rough causing the bottom line to contain a number of significant inaccuracies. 

If included, they would interfere with any relationships in the data, but by exclusion, 

there is a very real possibility that the fish within this area would not be represented.  

 

 

On Station       Between Station On Station
       ACOUSTIC DATA

       TRAWL DATA

 
Fig. 1: Diagram representing on station and interstation sections of the cruise track; on station sections 

have both acoustic and trawl data present, and interstation have only acoustic data as no trawling has taken 

place. 
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The water column for all sections of the cruise track was divided into depth layers, which 

were started from the seabed and continued upwards (Fig.2). For the North Sea layers of 

1 m were created from the seabed to 10 m above, and then 10 m layers were created up to 

the surface. For the Barents Sea only layers of 10 m were created due to the greater depth 

in this location. The total number of layers depended on the depth in different areas of the 

cruise track. 

 

 
 

Fig. 2: Echogram showing the bottom referenced layers created at different depths. The ten 

the first 10 m above the seabed were only created for the North Sea data. For the Barents Se

single layer was created to respresent the first 10 m above the seabed. 

 

Following postprocessing, data were exported into spreadsheets using thresho

dB to ensure that any values smaller than this caused by plankton and noise d

the signals from fish. The exported spreadsheets provide a value of nautical a

scattering coefficient (NASC, m2 n.mi-2) for each individual layer within each

 

   NASC = 4π(1852)2 sa      

 

where  sa is the area backscattering coefficient and 1852 is metres per nautica
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Trawl Data  

 

Data were recorded for time, position, gear geometry, and environmental conditions for 

each trawl. This included mean depth and mean water temperature close to the bottom. 

The catch data were divided up into demersal, pelagic, bottom fish and others. The catch 

data for each haul included number caught, root mean square length, mean target strength 

and mean weight for each species caught. Only species making up greater than 5% by 

weight of the haul were included in this study. 

 

To investigate the relationship between the fish caught in the trawl and the acoustic 

marks recorded on the echogram, comparable units need to be calculated. The observed 

NASC corresponds to the data exported from Echoview/BEI that was directly measured, 

and the equivalent NASC (ENASC) was calculated using measured quantities from the 

trawl data; catch numbers, the root mean square (rms) length (cm), and the swept area 

(n.mi.2). A reference quantity, b, was also used to calculate the mean target strength for 

an individual fish: 

 

   TS = 20logL+b       (2) 

 

where b is the species specific target strength constant (ICES, 2000) and L is the rms 

length  for a particular species within a haul. The derived target strength was then used to 

calculate the expected acoustic energy from an individual fish:  

 

σsp = 4π10(TS/10)      (3) 

 

The derived value of spherical scattering cross section (m2) was multiplied by the number 

of each species for each haul to produce the ENASC of the total catch at each station: 

 
 ENASC of total catch for a station =  σsp x number of fish   (4) 
 
     
To make the ENASC comparable with the observed NASC it must be divided by the 

swept area to ensure that both are standardised densities:  

 

Swept area = tow length (n.mi) x door spread (n.mi)    (5) 
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Standardised ENASC (m2 n.mi. -2) = ENASC / swept area   (6) 

 

The ENASC represents the equivalent acoustic energy that would have been produced by 

the fish caught in the trawl, which could then be compared against the observed acoustic 

energy for the corresponding section of cruise track. 

 

2.2 Artificial Neural Networks 

 

Multi layer perceptrons (MLPs) trained using backpropagation (BP) are the simplest and 

most commonly used network type primarily due to their versatility and speed (Basheer 

and Hajmeer, 2000). They consist of three layers: input, output and hidden (Fig. 3). 

Occassionally two hidden layers can be used for more complex problems. The input layer 

contains the independent variables, the output layer the dependent variables, and the 

hidden layer contains the hidden nodes which capture the non-linearity in the data. The 

hidden nodes do not interact with the outside of the network and are therefore ‘hidden’ 

within the network structure. The input layer has no activation function as it supplies the 

hidden layer with the input values. The number of nodes in this layer equals the number 

of variables supplied to the network.  Most MLPs are feedforward, fully connected 

networks where all the neurons in each layer emit a signal to all neurons in the next layer, 

with the exception of the output layer.  

 

Learning is supervised where both the input and the output variables are supplied to the 

network, in contrast to unsupervised where only the inputs are supplied and the network  

learns the stucture of the input values to produce a consistent output. Weights are applied 

to the connections between nodes and are initially random. They are adusted throughout 

the iterative training procedure undertaken using training algorithms to optimise the 

predictions made by the network in the output layer. Learning is complete when further 

modifications to the weights no longer improves the predictions, and at this point the 

weights are then fixed. Data that have not been used in training are then supplied to the 

input layer, run through the network with fixed weights and predictions are made. Values 

in this previously unseen data that are similar to those in the training data should have a 

similar output when run through a trained network.  
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Training Algorithms 

 
Back propagation is the most widely used algorithm for network training and there are 

numerous examples in numerous fields including fisheries science (Engelhard et al., 

2003; Maier and Dandy, 2000; Gaertner and Dreyfus-Leon, 2004; Mastrorillo et al., 

1997; Ruohonen, 1999). The name back propagation refers to the propagation of error 

back through each layer of the network (Rumelhart et al., 1986). Neurons in the hidden 

layer evaluate the intensity of the signal given by the input layer and this signal is 

quantified by a sigmoid function (logistic or hyperbolic).  

    

The algorithms extensively tested in this study were back propagation (BP), conjugate 

gradient descent (CGD), and Levenberg-Marquardt (LM). Algorithms can be local or 

global. Global methods include simulated annealing (Kirkpatrick et al., 1983) and genetic 

algorithms (Huse et al., 1999). BP, CGD, and LM are all local methods of which there 

are two different categories: first-order methods (BP) and second-order methods (CGD, 

LM). BP is based on a linear method (gradient descent) whereas CGD and LM are based 

on quadratic methods. Second-order algorithms more commonly get stuck in local 

minima, but are much faster overall. For these reasons the networks in this study were 

trained first using backpropagation, followed by either CGD or LM.  

 

Resampling 

 

Network performance is dependent on the random weights initially assigned to the 

connections. This can lead to networks with identical architecture performing quite 

differently depending on the initial weights assigned. For this reason it was necessary to 

run several samples and then use the mean when assessing design decisions to ensure that 

the network architecture selected was robust, and not just a good network due to a 

particular set of initial weights. 

 

Network Architecture 

 

Adjustments to network architecture lead to an extensive range of model complexities. 

The number of nodes in the hidden layer, learning algorithms, and the type of activation 

function, must all be selected correctly to optimise the network architecture. Many of 

 - 8 - 



these choices have to be made by trial and error and this is a very difficult and time 

consuming and task in the model building process (Maier and Dandy, 2000). 

 

INPUTS WEIGHTS HIDDEN LAYER OUTPUT

Random weights SUM (Input X weights)

Step, linear, ramp, or sigmoid

Compare with target values and adjust weights

Long

Lat

Depth

Acoust

Node 1

Node 2

DEM 
eq 

NASC
Activation Function

ƒ(y)

w1

w2

w3

w4

w5

w6

w7

w8

x1

x2

x3

x4

 
 

Fig. 3: The basic structure of an artificial neural network showing the input, hidden and output layers; 

connections between the nodes and layers; and the weights and activation functions within the network. 

 

Building a model 

 

The data used for network training in this study were the on station data. The 

relationships to be mapped were those between the acoustic data and the trawl data that 

were collected simultaneously. Following network training, the interstation acoustic data 

were then supplied to the network, and the trawl data for the section of the cruise track 

where no trawling occurred could be estimated by the model.  

 

There were two main components of the modelling process. Firstly, network training 

involving the optimisation of the network parameters described above. Secondly, model 

selection and testing.  

 

Network Training 

 

The number of hidden nodes for each network determines the number of connection 

weights (free parameters). The greater the number of connection weights, the better the 
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network is able to represent the function to be approximated, but the less likely the model 

will be able to generalise. This will result in the model failing when previously unseen 

data sets are applied. Although the aim of training is to reduce the error as far as possible, 

reducing the error too much leads to the network learning the noise in the training data, 

rather than the underlying relationships. When this occurs the networks has been 

overtrained. Taking the time to optimise the network design is critical in producing a 

reliable model when new data are supplied. Optimality is defined as the smallest network 

that captures the relationships in the training data (Maier and Dandy, 2000). 

 

Sensitivity Analysis 

 

Sensitivity analysis is performed to assess the contribution of each variables to the overall 

network performance. A ratio is calculated of the error with the variable unavailable, to 

the error with it available. Significant variables have a high ratio which indicates the 

network performs far less well without them present, and poor variables have a low ratio. 

The variables for each of the two locations were ranked in order of ratio value so that the 

contributions of each variable could be compared. 

 

Model Selection 

 

To assess the initial performance of each of the networks two parameters were used: 

• The standard Pearson-R correlation coefficient between the observed and 

predicted output values; 

• The error:standard deviation ratio to ensure the estimates have a lower prediction 

error standard deviation than the standard deviation of the training data. 

 

Model Testing 

 

To test the models that had performed well using the model selection criteria, previously 

unseen data were supplied to the networks, and statistics of the predicted data were 

compared to those statistics of the observed data. By comparing the mean, minimum, 

maximum, range, and standard deviation of these data, it was possible to assess whether 

the models had been overtrained, or whether they were able to generalise well when 
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supplied with new data. Some of the models predicted output values that were unlikely to 

occur, such as negative or extremely high values. Although acoustic data are 

characterised by few extremely high values which can be justified by true biological 

phenomena, some of the models predicted values beyond these.  

 

3. Results 

 

The networks were able to map the pattern between the input and the output values much 

more consistently for the Barents Sea data than for the North Sea data. This was 

demonstrated by the consistency of the network performance compared to the difficulties 

experienced when training the networks using the North Sea data. Two multilayer 

perceptrons were trained, both with four input variables; latitude, longitude, depth, and 

acoustics (Fig. 4). The dependent variable in the output layer was demersal NASC.    

 
Profile : MLP 4:4-7-1:1 

Acoustic Data

Demersal NASC

Longitude

Latitude

Depth

 
 

Fig. 4: Network architecture for the model used in this study. The input layer consisted of 4 variables in 
both the Barents Sea and the North Sea; the number of nodes in the hidden layer was determined by testing 
the performance of the model using a range of node number; and the output layer consists of the dependent 
variable demersal NASC.   
 

 

Optimising the number of nodes in the hidden layer 

 

Testing the network using varying numbers of nodes within the hidden layer forms a vital 

part of model optimisation. For each node number 10 samples were tested, and the mean 
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value of the correlation coefficient between observed and predicted output values, and the 

ratio between the error and training data standard deviations were calculated (Fig. 5). 

 

The correlations between the observed and predicted values for the North Sea are 

consistently lower than those for the Barents Sea indicating a poorer ability for the 

networks to learn the patterns. The values for the SD ratio are significantly higher for the 

North Sea, indicating again that the networks have not been able to map the inputs to the 

outputs as well as for the Barents Sea data.  

 

Figure 5a is a graphical respresentation of the results for the North Sea networks. As the 

node number increases there is virtually no improvement in network performance, and 

the standard deviation bars remain relatively large. This results in a very difficult decision 

regarding the optimal number of nodes to use in the hidden layer of the network. A 

network with 4 nodes was used as keeping the nodes number low prevents the network 

overlearning the data. 

 

The results for the Barents Sea data are significantly clearer than for the North Sea. The 

performance parameters show a rapid increase in model performance initially as the 

number of nodes increases from 1 to 6, and then becoming more stable after this number 

(Fig. 5b). The optimal node number chosen for the final models for the Barents Sea data 

was 7. The standard deviation bars are relatively small in the Barents Sea networks 

indicating a greater consistency in the training of the networks. After this number there is 

little improvement in model performance, but with a sharp increase in the likelihood of 

the model becoming overtrained due to a high number of nodes in the hidden layer. This 

decision is also justified by the relatively small standard deviation indicating that the 

network will perform consistently. 
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b) Barents Sea  
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Fig. 5: Changes in the correlation coefficient between the observed and predicted output values; and the 
ratio (SD Ratio) between the error standard deviation (predicted output minus observed output) and the 
training data standard deviation (observed output values) when the number of nodes in the hidden layer are 
adjusted.  
 
 
Sensitivity Analysis of Input Variables 

 

The results of sensitivity analysis must be interpreted with caution, as redundancies and 

interdependencies between variables can lead to quite different results on another 

network applied to the same data set. For this reason, sensitivity results were calculated 

for 100 models for each location to check for the consistency of the ranking for each 
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variable (Fig. 6). Each model has the same input and output variables, but different initial 

weights. There are ten samples for each node number (0-10). 

 

The acoustic variable used in network training was consistently ranked higher for the 

Barents Sea models than for the North Sea data (Fig. 6). The acoustic data for the Barents 

Sea was ranked either first or second in 80 % of the models (Fig. 6b), with the acoustic 

data for the North Sea ranked first or second in 0 %, and lowest in 80 % (Fig. 6a).  This 

indicated that the acoustic data contributed more to the overall performance of the models 

for the Barents Sea than for the North Sea. Depth proved to be an important variable in 

both locations, with longitude and latitude being ranked lowest. During initial analyses 

using all available input variables, different combinations were tested, and those ranked 

the lowest were removed to assess whether this had any positive impact on the models. 

All variables were removed apart from acoustics, depth, latitude, and longitude for the 

Barents Sea. For the North Sea, acoustics was ranked consistently low and would have 

been removed also if it was not the primary variable in the analysis.  
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b) Barents Sea 
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Fig. 6: The ranking of variables for the Barents Sea data indicating the relative contributions of each 
variable to the network training process for 100 different networks for each location (1=highest 
contribution, 4=lowest contribution). 
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b) Barents Sea 

Obs.
1

2
3

4
5

6
7

8
9

10

Sample Number

3.00

3.01

3.02

3.03

3.04

3.05

3.06

3.07

3.08

3.09

M
ea

n

Obs.
1

2
3

4
5

6
7

8
9

10

Sample Number

3.06
3.07
3.08
3.09
3.10
3.11
3.12
3.13
3.14
3.15
3.16

M
ed

ia
n

Obs.
1

2
3

4
5

6
7

8
9

10

Sample Number

-16

-14

-12

-10

-8

-6

-4

-2

0

2

M
in

im
um

Obs.
1

2
3

4
5

6
7

8
9

10

Sample Number

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

M
ax

im
um

Obs.
1

2
3

4
5

6
7

8
9

10

Sample Number

4
6
8

10
12
14
16
18
20
22
24

R
an

ge

Obs.
1

2
3

4
5

6
7

8
9

10

Sample Number

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

St
d.

D
ev

.

 
 
Fig. 7: Comparison between demersal NASC observed on station data with predicted data from the 10 
sample models. 
 

Model Testing 

 

Following network architecture optimisation, a method to select the best performing 

model from the samples for each location had to be derived. The samples differ only in 

the initial weights applied which are randomly assigned and then adjusted throughout the 

iterative training process. The between station data were supplied to all the samples and 

the predicted values for demersal NASC were output. The statistics of these data were 

compared with those of the on station observed data to test whether the predicted values 

appeared reasonable. The differences between the statistics of the observed and model 

predictions for the Barents Sea data were much smaller than for those for the North Sea 

(Fig. 7). For the Barents Sea sample 8 was selected as the best performing model as the 

statistics of the predicted data more closely matched the observed data than for the other 

samples (Fig.7b). For the North Sea, the selection of the best performing model was 

much more difficult as the observed data point was often found to be completely outside 
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the range of any of the data points of the predicted data (Fig.7a). This led to no model in 

particular being able to be confidently chosen from the samples. 
 

4. Discussion 

 

In combining acoustic and trawl data for two different locations, it has been demonstrated 

that there are clear differences in the success of extrapolating on station trawl data using 

interstation acoustic data. The combination using these methods worked much more 

successfully for the Barents Sea than for the North Sea. However, neither of the final 

models allowed the trawl data to be extrapolated adequately, with the models often under 

predicting the abundance of fish by being unable to predict the few particularly high 

values that are characteristic of fish stocks.   

 

The reasons for this contrast in model performance can be attributed to a number of 

different factors. The surveys in the Barents Sea have a far higher density of trawl 

stations with approximately 175 hauls per survey. This is compared to a maximum of 75 

hauls per survey in the North Sea. A total of 211 data points were available for the North 

Sea, which must be divided up for the network training process. This does not allow the 

network to be trained using a large enough range of points. This problem is exacerbated 

by the heterogeneous nature of the North Sea; making it necessary to ensure enough data 

points are available to fully represent all areas. The current surveys do not collect a 

sufficient quantity data that satisfy these criteria.  

 

In the southern North Sea depths as shallow as 30 m are common, resulting in significant 

noise in the acoustic data if the weather is rough. Further to the north between Scotland 

and Norway the depth increases to ~ 200 m. By treating all the data points in the survey 

in the same way, any difference in relationships due to these significant depth changes 

are not accounted for. The species composition is quite different in the northern and 

southern regions also, leading to differences in the behaviours of the fish. This may mask 

any relationship between the trawl and acoustic data if the two areas of the North Sea are 

treated similarly. In the Barents Sea, the depth is much greater leading to a smaller 

percentage of the water column containing noise due to bad weather or acoustic dead 

zones. The species compositions are more distinct leading to clearer relationships being 

 - 17 - 



found between what is caught in the net and what is captured by the echosounder (Beare 

et al., CM2004). 

 

The combination of acoustic and trawl data is based on the assumption that the fish 

caught in the trawl can be detected by the echosounder. There are a number of reasons 

why this may not always hold true. The net may not always be aligned directly behind the 

boat leading the fish being caught that are not passing underneath the ship. Also the 

different behaviours of the fish after the boat has passed over and when the net is fishing 

will seriously affect the relationship between these two data sets (Aglen et al. 1999, 

Michalsen et al., 1996). 

 

Numerous different methods have been used to approach this problem but with little 

success (Beare et al., CM2004; Mackinson et al., CM2004). Until these behavioural and 

survey design issues have been further investigated, it is difficult to see how a 

relationship between these data sets can be determined. 
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