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Abstract: Average age and size at maturation have decreased in many commercially exploited 

fish stocks during the last few decades. This phenomenon could be either a direct phenotypic 
response to some environmental variation, or the evolutionary consequence of some selective 
pressure. Traditionally used maturation indices, i.e. the age and size at which 50% of individuals are 
mature, are not appropriate to assess the causes of changes in maturation because they are 
influenced, in addition to maturation per se, by growth and survival. To make up for this 
shortcoming, and to disentangle evolutionary changes and phenotypic plasticity, we use a reaction 
norm based approach. A method is presented to estimate the reaction norm for age and size at 
maturation from a type of data commonly gathered for the management of fisheries. This method is 
applied to data on Georges Bank and Gulf of Maine Atlantic cod stocks. Maturation reaction norms 
in these stocks have shifted significantly downwards, i.e. there has been a tendency to mature earlier 
at smaller size. These findings support the hypothesis of an evolutionary trend, probably caused by 
the selective removal of larger fish and high fishing mortality rates. Consequences of such an 
evolutionary process for the sustainability of the fishery are discussed.  
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INTRODUCTION 
Life-history parameters, such as age and size at first reproduction, survival rate or the 

number of offspring, vary in space and time for a given species (Roff 1992, Stearns 1992). They are 
partially genetically determined and evolve according to selective pressures. They also depend on 
environmental variations expressed through phenotypic plasticity, which often has an adaptive 
value of its own (Stearns 1989, Scheiner 1993). Life-history parameters are directly linked to the 
fitness of individuals and to the dynamics of their population. Consequently, it is important to 
understand the relative influence of these direct and indirect environmental effects, i.e. the 
respective influence of phenotypic plasticity and evolution. Short-term experiments have assessed 
the respective influence of phenotypic plasticity and genetic differences on the variability of some 
life-history traits (Sorci, et al. 1996, Sultan 1996, Pigliucci, et al. 1997, Rohr 1997, Purchase and 
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Brown 2001). However, few studies have analyzed the long-term trend in a life-history trait and 
attempted to infer the causes of this trend, mostly because suitable data is seldom available. 

We contribute to filling this gap by taking advantage of time-series collected to support the 
management of commercially exploited fish stocks (Hilborn and Walters 1992). We chose to study 
age and size at maturation because fitness is very sensitive to these life-history parameters (Roff 
1992, Stearns 1992). For individuals, they influence the potential number of reproductive events. At 
the population level, they determine the size and age distributions of reproducing individuals, and 
influence the population reproductive potential because fecundity is usually size-dependent (Roff 
1992, Stearns 1992), but also often age-dependent in fishes (Trippel 1998, Trippel 1999). As a 
consequence, age and size at maturation strongly influence population dynamics and potential 
yields of commercially fished stocks. Moreover, reversing an evolutionary trend requires the 
selective pressure to be reversed for a long period, while a phenotypic trend is reversed rapidly if 
environmental conditions come back to their initial state. Thus, distinguishing phenotypic plasticity 
and evolutionary changes in age and size at maturation is important because evolutionary changes, 
when undesirable, are much more difficult to reverse than purely phenotypic changes. Taken 
together, we aim at answering a single question that has both theoretical and practical implications: 
Can age and size at maturation of a fish population evolve significantly over a period of a few 
decades? This question is interesting per se to improve our understanding of life-history evolution. 
This issue is also important to assess the sustainability of fisheries and current management 
strategies. 

In fisheries science, maturation dynamics is usually described by two indices: the age at 
which 50% of individuals are mature and the length at which 50% of individuals are mature, A50 
and L50 (Jørgensen 1990, Chen and Paloheimo 1994, Morgan and Colbourne 1999, O'Brien 1999). 
In many fish stocks these indices suggest that maturation processes have changed during the last 30 
years: fish reproduce younger and younger and at smaller and smaller sizes (Jørgensen 1990, 
Rijnsdorp 1993a, Rijnsdorp 1993b, Morgan, et al. 1999, O'Brien 1999). This trend could be due to 
purely phenotypic changes resulting from any long-term trend in the environment, e.g. the 
temperature or the population density, the latter influencing many relevant parameters such as food 
availability. Population density is actually a good candidate because it has decreased in many stocks 
due to high fishing mortality rates. Reduced population density is likely to partially relax density-
dependent effects that slow growth and delay maturation. The alternative explanation for the trend 
in A50 and L50 is that high fishing mortality rates could also cause genetic decreases in age and size 
at maturation, because fishing always alters the pattern of size- and age-dependent mortality and 
can select for specific combinations of age and size at maturation (Rijnsdorp 1993a, Law 2000, 
Stokes and Law 2000, Ratner and Lande 2001). These two explanations are not mutually exclusive. 

The indices A50 and L50 are estimated using a logistic regression to predict the probability of 
being mature as a function of age or size. Because the curves describing this probability are called 
maturity ogives, we will refer to the approach using these indices to characterize changes in 
maturation as the ogive approach. A50 and L50 indices describe the maturation process only partially. 
First, theoretical models show that maturation depends on both age and size (Roff 1992, Stearns 
1992) and empirical data support these findings (Stearns 1992, Rijnsdorp 1993b, Heino, et al. 
2002b). Consequently it would be useful to combine the information given by A50 and L50 in a single 
analysis. Second, these indices describe the probability of being mature, which depends not only on 
maturation processes, but also on survival and growth variations before and after maturation. For 
example, a decrease in the survival rate of mature individuals would decrease the probability of 
being mature at age or size, even if maturation processes have not changed (Heino, et al. 2002b). 
Characterizing maturation processes with the probability of maturing addresses these problems. 
When calculated as a function of both age and size the probability is by definition conditioned on 
age and size, and therefore allows the characterization of maturation processes independently from 
the processes of growth and survival. This probability corresponds to the probabilistic extension of 
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the classical reaction norm for age and size at maturation (Stearns 1992, Heino, et al. 2002b). We 
will refer to this approach, based on maturation probabilities, as the reaction norm approach. 

A complete reaction norm for age and size at maturation (for short, maturation reaction 
norm) is constituted by the set of curves describing the probability of maturing as a function of age 
and size. Figures often only display the size at which the probability of maturing is 50%, the so-
called reaction norm midpoints, which are usually plotted as a function of age. Unlike traditional 
reaction norms, which describe the changes in a phenotypic trait as a function of environmental 
variables, maturation reaction norms do not explicitly involve any environmental variable (Stearns 
and Koella 1986, Stearns 1989). This reaction norm interpretation assumes that environmental 
variability influencing maturation always results in some growth rate variations, and conversely, 
that these variations are mostly due to environmental variability. Under these assumptions, each 
point of the size-age space corresponds to a point of a growth trajectory characterized by a mean 
growth rate, which is determined by the past environmental conditions. This justifies the name of 
reaction norm. It is further assumed that individuals mature in a probabilistic way when their 
growth trajectories pass through the maturation reaction norm (Heino, et al. 2002b). As for reaction 
norms in general, if two populations have different maturation reaction norms, we can assume that 
they are genetically different. Estimating reaction norms for age and size at maturation is thus 
useful for disentangling the direct reversible effect of environmental variations (phenotypic 
plasticity) and possible genetic changes. 

Barot et al. (2002) have shown how to estimate the reaction norm for age and size at 
maturation when data on both mature and immature individuals are collected annually. The method 
enables the estimation of the probability of maturing at age and size for individual cohorts. 
Unfortunately, it requires a large sample size for the estimations to be robust. Our goal is twofold. 
First, we describe an improvement in the estimation method of Barot et al. (2002). This 
improvement allows for the use of smaller sample sizes by assuming a common pattern in the shape 
of the reaction norm of the different cohorts. Second, we estimate the reaction norms for age and 
size at maturation for two Atlantic cod (Gadus morhua) stocks. We use artificial data to test the 
robustness of the method and to facilitate the interpretation of the results. We then discuss the 
biological interpretation and the fishery implications of these results. 

MATERIAL AND METHODS 

Biological and environmental data 
The method used to estimate maturation reaction norms requires that a representative sample 

of mature and immature individuals is collected annually, and that their age, size, and maturity 
status are determined (Barot, et al. 2002). We examine data for two stocks of Atlantic cod in the 
Northwest Atlantic, Georges Bank and the Gulf of Maine (hereafter GB and GM), of the Northwest 
Atlantic. The exploitation rate on both stocks has increased over the last four decades, due to the 
increased effort of the distant-water fleets during 1960-1970, and the subsequent increased effort of 
both due USA and Canadian fisheries. The data is obtained from a spring bottom trawl survey 
conducted since 1968 by a research vessel of the Northeast Fisheries Science Center (Azarowitz 
1981, O'Brien 1999). Sampling is random but stratified by length. 

We examine two environmental variables that could influence maturation either directly or 
indirectly. The first variable, the spring bottom temperature anomaly describes variations in the 
water temperature, which is an important factor of the physical environment of cod. This anomaly is 
computed as the difference between the observed temperature and a long-term average (Holzwarth 
and Mountain 1990) and is estimated from temperature data measured during the spring research 
vessel bottom trawl survey (O'Brien 1999). The second variable, the spring stratified mean weight 
per tow (kg), is an index of the cod stock biomass. It allows assessing density-dependent effects on 
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maturation, that could, for example, be due to a decline in food availability when the stock biomass 
is high (O'Brien 1999, O'Brien and Munroe 2000). 

General description of the estimation method  
The probability of maturing at age a and size s, m(a,s), can be calculated from estimations of 

the probabilities of being mature at age and size, o(a,s), and from estimations of the mean annual 
growth at age, s∆  (Barot, et al. 2002):  

( ) ( ) ( )
( )

, 1,
,

1,1
a a

a s
a s

o o s

o
m

s s
s

−
=

− −

− − ∆
− ∆

. (1) 

This equation is strictly valid only under the assumption that immature and mature individuals have, 
within an age and size class, the same survival and growth rates. However, we have shown that the 
estimation is robust to violations of these assumptions (Barot, et al. 2002). The full estimation 
method involves four steps: (1) o(a,s) is estimated through a logistic regression. (2) ∆s is estimated 
as the difference between the mean size at age for two consecutive ages. (3) m(a,s) is computed 
using Eq. 1. (4) A facultative step is to summarize the array of m(a,s) values by a few parameters, 
e.g. the reaction norm midpoints (the sizes at which the probability of maturing is 50%). This last 
step is particularly useful for getting parameters that can be used to compare easily the reaction 
norms of different stocks or different cohorts. The first possibility is to fit a logistic regression 
model, and to describe the reaction norm by the model-predicted reaction norm midpoints. The 
second possibility it to estimate the reaction norm midpoints by interpolation between the sizes that 
lead to the probabilities of maturing immediately superior and inferior to 50%. Our preliminary 
analyses showed that the interpolation method is more robust as a last step, because the logistic 
curve may not always fit well the estimated probability of maturing. 

The estimation procedure outlined above has been applied independently to individual 
cohorts (Barot, et al. 2002). To estimate robustly reaction norm midpoints, at minimum 100 
individuals must be sampled for each considered age and cohort (Barot, et al. 2002). If the 
probability of maturing at an age where few individuals mature (either because most of them are 
already mature, or conversely, because they tend to mature later) is to be estimated, even larger 
samples are required. To improve the performance of estimation when samples are small, we utilize 
simultaneously information on all available cohorts by describing the maturity ogive with a single 
logistic model. 

Estimation of annual growth 
Estimates of growth rates are obtained by computing the mean size at age for each cohort 

and subtracting the mean size at age of consecutive years. These values can be smoothed using for 
example a linear model omitting the interaction between age and cohort. Preliminary analyses 
showed that smoothing was not necessary and that reaction norm estimations are not sensitive to 
this choice. 

Estimation of age and size-based maturity ogive 
The probability of being mature at age a, and size s, for an individual of cohort c can be 

estimated using the following logistic regression model (Collett 1991) using the logit link function: 
( )( ) 0 , 0,logit , c a a c c a a cao ,s c s sα α α α β β β β= + + + + + + +s s . (2) 

Parameter 0α  is the general intercept term and 0β  is the average effect of size. The constants cα , 

aα  and ,a cα express the effects of age and cohort considered as factors, as well as their interaction, 
while the constants cβ , aβ  and ,a cβ  express the age- and cohort-dependent effects of size 
considered as a variate. This statistical model is a full model: all possible interactions between the 
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three independent variables, age, size, and cohort, are taken into account. This full model 
corresponds to the independent estimation of maturity ogives for each cohort and each age. 

This approach should lead to the least-biased results, but it is not robust when sample sizes 
are low (Barot, et al. 2002): when too many parameters are estimated relative to the sample size, 
standards errors of the estimated parameters increase, and parameters estimates may become 
unstable. To reduce the required sample size, one must make assumptions on the common shape of 
the reaction norms of the different cohorts and on the effect of size across ages and cohorts. 
Technically, there are two solutions: reducing the number of estimated parameters (i.e. assuming 
that some of the constants of Eq. 2 are equal to zero), or considering age or cohort as variates. The 
final model used was determined after preliminary analyses were conducted, and is presented in the 
results section. 

Calculation of confidence intervals and randomization tests 
The estimation method is based on several successive statistical analyses involving an 

intermediate calculation step (Eq. 1) that combines the results of the previous statistical steps. 
Hence direct derivation of confidence intervals or statistical tests is not possible. To surmount this 
problem we use bootstrap and randomization approaches (Manly 1991).  

Confidence intervals are computed by bootstrapping. When, in a given cohort, na individuals 
have been sampled at age a, na individuals were chosen at random with replacement. This 
resampling is repeated for each cohort. The resulting resampled data set is used to derive the 
reaction norms of the different cohorts and their midpoints (Barot, et al. 2002). The process is 
repeated a 1000 times and the resulting distribution of the estimated midpoints used to derive 95% 
confidence intervals (Manly 1991). 

We use randomization to test statistical hypotheses on reaction norms. For example, to test 
whether males and females have different reaction norms for age and size at maturation, observed 
sex values were permutated randomly among individuals for each cohort and each age. Repeating 
this step for all ages and cohorts leads to a new data set for which any difference between 
maturation of females and males would only arise by chance. Such a data set is used to estimate 
independently the maturity ogives for males and females. The probability of maturing is then 
computed independently for males and females. The last step (see above, step 4 in the general 
description of the method) is to model the probabilities of maturing, independently for each age, 
through a logistic regression model incorporating a sex effect: 

( )( ) 0 0logit c sexm s sα α α β= + + + .  
This randomization procedure is repeated 1000 times and the likelihood-ratio χ2 statistic 

computed and collected to test for the sex effect. The same calculations are applied to the observed 
data, without randomization. A given effect is then considered to be significant for a given age if 
less than 5% of randomizations leads to higher values of the test statistics than the one computed for 
the observed data.  

The same randomization procedure was used to test for a stock effect and a cohort effect 
using the following models as a last step: 

( )( ) 0 0logit c stockm s sα α α β= + + +  and  

( )( ) 0 0 1logit m s s cα β β= + + . 
In this last model, cohort is used as a variate to test for the existence of a linear temporal trend, not 
merely for the existence of significant differences between cohorts. Finally, to test for the shape of 
the reaction norm (age effect), a randomization test based on a logistic model, taking into account 
age as a factor and cohort as a variate was used: 

( )( ) 0 0 0logit   a am s s c cα α β β γ= + + + + s .  
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RESULTS 

Environmental variations 
There is a significant long-term trend in the biomass of both the GB and the GM cod 

stocks (Fig. 1, linear regression: GB, P<0.001, slope=-0.39 kg per tow yr-1; GM, P<0.001, slope=-
0.21 kg per tow yr-1). The temperature anomaly fluctuates but exhibits no long-term trend (linear 
regression, GB, P>0.05; GM, P>0.05).  

Growth 
Growth varies from year to year but no long-term temporal trend is evident for ages 1-5 for 

female and male cod on GB and in the GM (Fig. 2). This was checked for all combinations of sex 
and stock, using a linear model including the effect of cohort (considered as a variate; F-test, 
P>0.05) and the effect of age. ANOVA models (for GB and GM stocks) including the effects of age 
and sex did not reveal any significant difference between the size increment of males and females 
(F-test, P>0.05). Similarly, ANOVA models, for males and females, including the effects of stock 
and age were used to test for any difference between stocks. For both sexes, yearly size increments 
are larger in GB than in GM (F-test, P<0.05). 

Maturity ogives 
Before estimating the reaction norms, a statistical model has to be chosen for the maturity 

ogive. Preliminary results and the study of the robustness of the estimation method (see section 
'Robustness o the results' below) showed that for the GB and GM data sets, the sample size at age is 
too low to analyse the interaction between age and size using both age and size as factors (discrete 
variables). Consequently the full statistical model (Eq. 2) has to be simplified. 

Which features of this full model must be conserved? It is a priori important to take into 
account the interaction between age and cohort to be able to measure the likely effects of cohort and 
age on the probability of being mature, but also the yearly effect of environmental variations. 
Preliminary analyses also showed that including cohort as a factor is necessary to be able to detect 
changes in the shape of the reaction norm for age and size at maturation. On the basis of these 
considerations, we chose to use age as a variate (continuous variable) and to include only the 
interaction between age and cohort: 

( )( ) 0 0,logit , c cao s c a sα α β β= + + + .  
The consequences of this statistical model on estimations of probabilities of maturing are not 

straightforward. However, it is clear that it is not possible to detect changes in the inter-quartile 
range (defined as the width of the size interval between which the probability of maturing increases 
from 25 to 75%) with age or cohort, because interaction between size and age or size and cohort 
was not included. However, inter-quartile ranges are not expected to be very variable as indicated 
by an earlier analysis using a full model for the ogive (Barot, et al. 2002).  

Maturation reaction norms 
Midpoints of the maturation reaction norms and the corresponding confidence intervals were 

estimated for each cohort, separately for male and females of both GB and GM cod stocks. As an 
example, Fig. 3 displays the female reaction norms for age and size at maturation assessed for the 
1980 cohort of GB cod. The inter-quartile range is always between 10 and 20 cm. Confidence 
intervals for the midpoints are narrower for ages at which most individuals mature, i.e. close to the 
intersection between the reaction norm and the mean growth curve. This results simply from the 
fact that more maturation data is available for these ages. 
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Reaction norms, averaged over five years periods and estimated by sex and by stock indicate 
a temporal trend towards maturation at smaller size (vertical shift of the reaction norms, Fig. 4). 
This pattern is stronger for GB than for GM cod. The existence of this trend is confirmed by the 
results of randomization (Table 1). This result is also obvious looking at the values of the midpoints 
for all cohorts without any pooling (Fig. 5), despite the large short-term variations in the midpoints.  

Reaction norms are horizontal in shape, or tend to be bent downwards for older ages (this 
pattern is significant for males and females of GB, randomization tests for an age effect, P<0.05, in 
these two cases predicted midpoints decrease from age 1 to 5), i.e. at the same size old individuals 
have higher probabilities of maturing than young ones. There is a trend, clearer for GB, towards an 
increase of the reaction norm slope (Figs. 4 and 5). This means that for the earlier cohorts age tends 
not to influence the probability of maturing, while for the more recent ones the probability of 
maturing at a given size increases with age. 

It must be emphasized that the maturation reaction norm is in fact constituted by the set of 
curves describing the probability of maturing as a function of age and size. Fig. 4 and 5 only display 
the reaction norm midpoints, i.e. the sizes at which the probability of maturing is 50 %. This is very 
useful to compare the probability of maturing between ages and populations, but this does not mean 
that fish really mature at these sizes. For example, it is obvious, looking at the mean size at age on 
Fig. 3, that five-year-old cods are on the average taller than the reaction norm midpoint (45 cm). 
Thus the reaction norm means that immature five-year-old cods have a probability of maturing 
much larger than 75 % and mature on the average when they are about 70 cm long. Conversely, the 
reaction norm indicates that the probability of maturing at age one is much smaller than 25 % (in 
fact, this probability is nearly zero) because at this age cods are on the average 25 cm long.  

Significant differences between sexes and stocks are revealed by randomization tests 
(Table 1). First, they show that the probability of maturing at age and size tends to be higher for 
females than for males (only two significant tests out of ten, Table 1). Because the reaction norms 
are nearly horizontal or are slightly tilted downwards for older ages that means that females tend to 
mature at smaller sizes, and slightly younger ages than males. Second, the probabilities of maturing 
at age and size tend for both sexes to be higher for GB than for GM at age 2 (Table 1), while it is 
the reverse for age 4 and 5 for females (test not significant for males). 

ROBUSTNESS OF THE RESULTS 
The estimation method to calculate the probability of maturing has been shown to be robust 

to the hypothesis that growth and survival rates are similar for juvenile and mature individuals at a 
given size (Barot, et al. 2002). We have estimated the reaction norms of all available cohorts at the 
same time, using a single, simplified model for the maturity ogive. This permits estimation of 
reaction norms using smaller sample sizes. However, model simplifications might result in biases. 
We perform robustness analyses to study how simplifications of the maturity ogive manifest 
themselves in the estimated maturation reaction norms. We also focus on the consequences that 
annual variations in environmental conditions and errors in determining the maturity status may 
have on the estimations. We do so by creating artificial data sets encompassing information on more 
than one cohort, using a priori theoretical probabilistic reaction norms (Barot, et al. 2002, Heino, et 
al. 2002a). These data sets can then be used to estimate the reaction norm using the described 
method, and estimated and theoretical reaction norms are then compared. 

Implementation 
To create artificial data sets, we used the procedure described in detail by Barot et al. 

(2002). Data is generated by allowing individuals to mature according to a given probabilistic 
reaction norm for age and size at maturation, to survive with a probability that may differ between 
juveniles and adults, and to grow deterministically. For each cohort the reaction norm is defined by 
the intercept of the reaction norm at the origin, its slope, and inter-quartile range (inter-quartile 
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range of 10 cm width was always chosen, which means that an individual must grow 10 cm to 
increase its probability of maturing from 0.25 to 0.75). The final output is composed, for each 
cohort and each age, of Nsample randomly sampled individuals, some of which are mature and some 
immature. Size, age and maturity status of each individual is known. Ten replicate data sets were 
created for each robustness test. 

The artificial data is unrealistic in one important way: it ignores the short-term 
environmental variability that might cause annual, cross-cohort anomalies in the tendency to 
mature. To implement such variability, the value of a random normal variable is added each year to 
the reaction norm midpoints of all cohorts. This random variable has a 0 mean, and its standard 
deviation (Ysd) denotes the strength of the dependence of maturation on short-term environmental 
variability. It can be predicted that the higher is Ysd the higher is the bias in the estimated reaction 
norms. Testing for the strength of this effect is important because the estimation method assumes 
that the probability of maturing depends only on age and cohort, discarding across cohort yearly 
effects. 

At last, we checked for the robustness of the estimation method to a likely problem of data 
quality: some mature individuals are probably misclassified as mature, and vice versa. It might be 
difficult to distinguish an immature individual from a mature one for which the gonad is in a resting 
stage (O'Brien and Munroe 2000). The misclassification is likely to be "conservative": small resting 
fish are likely to be classified as immature, while large immature fish tend to be interpreted as 
resting mature fish. This should lead to an increase in the ogive steepness (the probability of being 
mature increases quicker with size), but the size at which 50% of individuals are mature is not 
biased. This was implemented using the same general procedure as for the other robustness tests 
and multiplying the logit of the originally estimated ogive by a factor higher than 1. 

Due to the simplified statistical model used for the ogives, the estimation method is not 
likely to estimate precisely the shape and the position of the reaction norms of individual cohorts. 
Yet, the method should correctly estimate temporal trends in the reaction norm midpoints, and 
simple changes in the reaction norm shape, i.e. temporal trends in the reaction norm slope. 
Consequently two features were used to compare theoretical reaction norms to the estimated 
reaction norms: the temporal trend in the reaction norm midpoints, computed for each age by a 
linear regression, and the slope of the reaction norm, estimated by an other linear regression. For 
each variable the mean and the absolute mean error were computed when possible (see below) 
using ten data sets.  

We chose to use artificial data sets which have approximately the same size as the 
available data set for GB and GM cod stocks: 30 cohorts, and 30 individuals sampled at age in each 
cohort. The following Ysd values were used: 2, 4, 6, 8 and 10. Two different types of artificial data 
sets were created, the reaction norms being always linear. First, all reaction norms are horizontal 
and shift vertically for the successive cohorts (for the first cohort the midpoints values are 55 cm for 
all ages, while for the 30th cohort the midpoints values are all 40 cm). Second, the reaction norm of 
the first cohort is horizontal, but the reaction norm slope decreases from the earlier to the later 
cohorts until it reaches a slope of -3 cm yr-1 (for the first cohort the midpoints values are 55 cm for 
all ages, while for the 30th cohort the midpoint at age 1 is still 55 cm, while the midpoint at age 5 is 
at 40 cm). 

Results of the robustness tests 
The vertical temporal shift of the reaction norm is recovered by the estimation method 

(Table 2). Even when the year effect (Ysd) increases, the mean estimated temporal trend is not 
biased systematically although the mean error increases. Estimations are not more biased for ages at 
which few individuals mature (ages 1 and 5 yrs): the error term in the estimated midpoints is 
homogeneous across the five ages. Estimations of the slope of the reaction norm (relationship 
between midpoint and age) are slightly biased towards negative values (Fig. 6) for all but the higher 
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intensity of year effect (Ysd=10) for which the bias is positive. For each age, errors in slope 
generally increase with the year effect (Ysd). 

When the successive cohorts are more and more tilted clockwise the temporal trend of the 
reaction norm midpoints is correctly detected (Table 3), at least when the year effect is not too high 
(Ysd<6). When the year effect increases (up to Ysd=8) the temporal trend in the reaction midpoints at 
age is qualitatively well estimated but not quantitatively (Fig. 6). For Ysd<6 the estimated reaction 
norms are tilted as the actual ones, but it is no longer the case for higher year effects. Errors in the 
reaction norm slope (relation between midpoints and age) are low at least for Ysd<8. Both the 
estimations of the temporal trend in the reaction norm midpoints and the slope of the reaction norm 
were found to be very robust to errors in the determination of the maturity status (Table 4). In fact, 
the mean estimation errors even decrease slightly when the ogive bias and the percentage of 
misclassification increase. 

Taken together, the estimation method is robust to the violation of the assumption that there 
is no year effect across cohorts. The method is also robust to the misclassification of individuals 
into the mature and immature groups, which is the main problem likely to decrease the data set 
quality. In particular, our robustness tests show that the sample sizes and number of cohorts 
available for GB and GM cod stocks are high enough for our results to be valid, even if the year 
effect on maturation is strong. 

DISCUSSION 
Our first conclusion is methodological: it is possible to assess, even with small sample sizes, 

the long-term trend in maturation reaction norms if data on both immature and mature individuals is 
available. Consequently, the methodology is in place to use the maturation reaction norm approach 
for many fishery data sets. This allows analyzing the long-term trend in a life-history trait, which 
has seldom been achieved before. The second main result is that our analyses reveal, for GM and 
GB cod stocks, a shift of the maturation reaction norm towards lower ages and sizes at maturation. 
We discuss below the interpretation of such a trend, and emphasize that maturation reaction norms 
can help to better understand changes in maturation that were previously detected with the maturity 
ogive approach.  

Maturity ogive vs. maturation reaction norms 
Variations in maturation of the GB and GM cod stocks have earlier been studied using 

estimations of the probability of being mature, i.e. the maturity ogives (O'Brien 1999). We examine 
the same problem using the reaction norm approach. Results of both approaches are partially 
consistent. First, they both reveal a long-term trend towards lower ages and sizes of reproducing 
individuals. Second, they show that individual cods tend to start reproducing at smaller sizes at age 
on GB than in the GM at age two and the reverse for older ages. In apparent contradiction with 
former results using the maturity ogive approach for other cod stocks (Beacham 1983, Trippel, et al. 
1997, Ajiad, et al. 1999), males tend to start reproducing at higher ages and larger sizes than 
females. It must be emphasized that the reaction norm and the maturity ogive approaches bring 
forwards qualitatively different information. The probability of being mature depends not only on 
maturation processes, but also on variations in the growth and survival rates, while the probability 
of maturing only depends on maturation. Consequently, it is easier to interpret variations in the 
probability of maturing than in the probability of being mature. 

Temporal or spatial variations in the probability of maturing are potentially due to both 
genetic and to environmental variations. However, we have used the reaction norm approach for age 
and size at maturation that focuses on maturation probability conditioned on age and size, so that 
these two nonexclusive possibilities are partially disentangled. Taken together, by definition of this 
type of reaction norm (Stearns and Koella 1986, Heino, et al. 2002b, Heino, et al. 2002a), 
differences between reaction norms are due to genetic differences, or to environmental variations 
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that do not result in growth rate variations, because different growth trajectories would pass through 
the reaction norm in different points.  

We acknowledge that the denomination of reaction norm for maturation reaction norms can 
be disputed because environmental variations are not explicit, because maturations can be 
determined by other variables that are not taken into account (weight, liver index) and because 
growth variations are not only environmentally determined. However, size at age has been proved 
to be very sensitive to environmental variations both using tank experiments and field data 
(Wootton 1998, Imsland and Jónsdóttir 2002) and long-term time series are seldom available for 
other relevant variables. Moreover, it is likely that the growth of an individual is partly determined 
by its genes (Conover and Schultz 1995, Wootton 1998, Imsland and Jónsdóttir 2002), but that 
should not impede the conclusion that two different maturation reaction norms support the idea of 
two different genotypes. This conclusion should only be hindered if the evolution of growth is 
strongly linked to the evolution of maturation through some common genes that act both on sexual 
maturation and growth, which is unlikely. 

Interpretation of maturation reaction norms 
How to interpret the maturation difference between males and females? The difference 

between male and female maturation reaction norms is unambiguous to interpret because males and 
females of a given stock experience the same environment. The differences in probability of 
maturing must therefore be due to intrinsic, genetic differences between males and females. Sex-
specific maturation schedules could have evolved due to a difference in the reproductive energy 
expenditure of males and females, or in the dependence of fecundity and survival on size (Roff 
1992, Stearns 1992). Our results might look surprising because it is acknowledged that female 
reproduction requires usually more energy than male reproduction, so that males have evolved 
smaller sizes and ages at maturation (Stearns 1992). Nevertheless, the observed difference between 
sexes is very small (Fig. 4 and Fig. 5) and only significant in two cases (age 2 and 3, Table 1). The 
reaction norm approach could be applied to other cod stocks to check if the differences between 
sexes found with the maturity ogive approach (Beacham 1983, Trippel, et al. 1997, Ajiad, et al. 
1999) correspond actually to maturation differences, and not to survival or growth differences. 

Interpreting the temporal trend in maturation reaction norms and the differences between the 
two stocks is more complicated than interpreting the maturation difference between males and 
females. This is due to the fact that environmental conditions vary in time (Fig. 1), and that the two 
stocks experience different environments (O'Brien 1999). This alone could explain, through 
phenotypic plasticity, the temporal trend in the reaction norm and maturation differences between 
the two stocks. However, there is no long-term trend in growth rate, while there is a significant 
difference between the growth rates of the two stocks.  

How to interpret the temporal trend in the maturation reaction norms? Two non-exclusive 
hypotheses can explain this trend. A first hypothesis is that selective pressure by the fishery has 
caused evolution towards low age and size at maturation. A second hypothesis is that the temporal 
trend is due to phenotypic plasticity. The maturation trend should then be explained by a long-term 
trend in the environment; these two trends would necessarily be parallel. In this context, stock 
biomass is a good environmental candidate variable because it displays a decreasing trend since 
1970 (Fig. 1). Moreover, stock biomass is a relevant variable because it may influence cod life-
history through density-dependant processes. For example, food availability may increase when 
biomass is low. However, this phenotypic plasticity scenario is improbable. Tank experiments and 
field data show that growth is sensitive to most environmental variables, so that growth is likely to 
be sensitive to any environmental variable that could influence maturation through phenotypic 
plasticity (Wootton 1998a). Consequently, if the temporal trend in maturation was due to 
phenotypic plasticity, we should also observe a temporal trend in the growth rate, which is not the 
case. 
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Of the other environmental variables that could explain the observed maturation trend 
through phenotypic plasticity, water temperature can be ruled out because this variable does not 
show any long-term trend (Fig. 1). Because no trend in growth has been detected, other candidate 
variables would need to influence maturation without influencing size-at-age at the same time. 
Though such a variable could exist, we are not aware of any evidence pointing to this direction. For 
all these reasons, the long-term trend in maturation reaction norms and the corresponding decline in 
age and size at maturation are probably mostly due to a genetic change. 

A decrease in age and size at maturity has been detected in many fish stocks using the 
maturity ogive approach: American plaice (Morgan and Colbourne 1999), North sea plaice 
(Rijnsdorp 1989, Rijnsdorp 1993a) and cod (Jørgensen 1990, Trippel, et al. 1997). The next step to 
understand these declines would be to check, using maturation reaction norms, whether they are 
really due to changes in the maturation process. It would be interesting to compare the reaction 
norm trends of stocks that have different fishing histories. It would be particularly useful to apply 
the reaction norm approach to a stock for which the total biomass has first decreased, but is now 
increasing due to some fishing restrictions. If age and size at maturation have constantly been 
decreasing, very few doubts would remain on the fact that the maturation has truly evolved due to 
the fishing pressure. 

How to interpret the maturation differences between the two stocks? The ogive approach 
suggested clearly that cod matures earlier and at smaller sizes on GB than in the GM (O'Brien 
1999). The reaction norm approach gives more balanced results: of four significant tests out of ten, 
two indicate that maturation is at a smaller size on GB than in the GM, and two indicate the reverse. 
The discrepancy between the two approaches is due to the fact that only the reaction norm approach 
corrects for differences in growth rates, which are actually higher on GB than in the GM (Fig. 3). 
This means that the difference in maturation between the two stocks is actually less important than 
predicted earlier, and that this difference might be reversed for older ages. Nevertheless, GM and 
GB cod stocks experience different environmental conditions (O'Brien 1999). GB constitutes a 
highly productive shoal averaging 50 m in depth, while the GM is a deeper area with an average 
depth of 150 m. Moreover, the autumn water temperature is higher for GB than for the GM. These 
differences correspond to relevant traits of the physical environment of a cod because they result in 
faster growth rates on GB than in the GM. It is thus possible that these environmental differences 
are important enough to lead to purely phenotypic changes in age and size at maturation, which are 
not taken into account by the reaction norm approach. The maturation differences between the two 
stocks are due, at least partially, to phenotypic plasticity. Yet "common garden" experiments (fish 
of different stocks are kept in the same environmental conditions) suggest the existence of 
genetically determined differences in some growth-linked parameters between GB and GM cod 
stocks (Purchase and Brown 2001). Moreover, molecular studies have shown that geographically 
adjacent cod stocks can be genetically different (Ruzzante, et al. 1995). It cannot be excluded that 
maturation differences between GB and GM stocks have also a genetic component.  

Can fishing pressure lead to rapid evolution? 
Although we have not strictly proved that age and size at maturation have genetically 

changed, our analyses support this interpretation. It has been widely recognized since Borisov's 
(1978) and Ricker's (Ricker 1981) pioneering work that such an evolution of a life-history trait 
could be due to the selective pressure exerted by fishing (Ylikarjula, et al. 1999, Hutchings 2000b, 
Law 2000, Stokes and Law 2000, Ratner and Lande 2001). However, this idea has been mostly 
developed using verbal arguments and theoretical models. It is one of the first times that the 
evolution of a life-history parameter at the scale of several decades is suggested so clearly with field 
data. Fishing can be considered here as a long-term experiment, while former studies have used a 
real experimental approach (Reznick, et al. 1990, Reznick, et al. 1997). 
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Because fishing gears are size-selective, and fishing is age-selective, at least through this 
size dependence, it is generally accepted that fishing represents a selective pressure for life-history 
traits. It is more difficult to predict the outcome of such a selective pressure. What should be the 
direction of evolution for a given exploitation regime? How quick could be the consecutive 
evolution? On the one hand, both verbal arguments and formal modeling predict that harvesting of 
both immature and mature fish (which is the case for Georges Bank and Gulf of Maine cod stocks) 
selects for low ages and small sizes at maturation (Borisov 1978, Law and Grey 1989, Ylikarjula, et 
al. 1999, Law 2000). On the other hand, our understanding on the expected rates of changes is poor. 
The observed changes in the reaction norm midpoints, about 20 cm for all ages (Fig. 4 and Fig. 5), 
might appear too large to be due to 30 years of selective pressure on a species for which the average 
age at maturation is about 3 yrs. Yet, fishing mortality is commonly so high that it results in very 
high selection differentials (Law 2000), and fishing mortality has been indeed very high for Gulf of 
Maine and Georges Bank cod stocks (O'Brien 1999, O'Brien and Munroe 2000, Mayo, et al. 2002). 

High evolutionary rate require not only large selection differentials, but they also require 
high heritabilities for the studied life-history traits. Because life-history traits are directly linked to 
fitness, their heritabilities are often assumed to be lower than the heritabilities of morphological 
traits (Mousseau and Roff 1987). However, relatively high heritabilities (around 0.31, mean of 
height fish breeding experiments) have been found for age at maturation (Law 2000), and such 
values should not preclude quick response to selection. It must be noted that assessing the 
heritability of maturation parameters in the wild is the prerequisite for estimating how quickly such 
traits can evolve under fishing pressure. Modeling will then be the necessary tool to check whether 
the observed decline in age and size at maturation are compatible with assessed heritabilities and 
fishing selectivity (Ratner and Lande 2001). 

Consequences for the sustainability of fisheries 
We have shown that our analyses are relevant to tackle strictly evolutionary issues. 

However, our results and forthcoming studies on temporal trend in the probability of maturing are 
primordial to understanding the long-term dynamics of commercially fished species. Many fish 
stocks have collapsed, probably due to the combination of multiple factors that generally involve 
overfishing (Myers and Cadigan 1995, Myers, et al. 1996). This has resulted in many attempts to 
estimate more precisely the parameters determining stock dynamics and their variability. These 
collapses have also resulted in more precautionary fishing strategies that aim at rebuilding the 
stocks. In this context, the reason why some stocks, in particular the Northwest Atlantic cod stocks 
are not rebuilding is unclear (Hutchings 2000a). 

One explanation involves the maturation of individuals at smaller and smaller sizes, and at 
younger and younger ages (Hutchings 1999, Trippel 1999, Murawski, et al. 2001). This trend in age 
and size at maturation is likely to reduce indirectly the reproductive potential of the stock, leading 
to low recruitment rates. This would be due to two mechanisms. First, old individuals spawn for a 
longer period than young ones, which increases the chances of larval emergence during a peak of 
zooplankton abundance (Hutchings and Myers 1993). Second, smaller sizes lead to lower fecundity, 
and younger ages at maturation seem to lead to lower egg quality (Trippel 1998, Trippel 1999). 

This scenario, linking low reproductive potential and low age and size at maturity, 
constitutes one more reason to assess whether age and size at maturation have changed either 
through phenotypic plasticity or because of a change in the genetic composition of the stock. The 
latter option would mean that age and size at maturation are unlikely to increase notably within a 
short period of time because selective pressures for small/large sizes, and young/old age at 
maturation are not symmetric (Law and Grey 1989, Heino 1998, Law 2000). Even such an extreme 
measure as closing a fishery is likely, at best, to create a moderate selection pressure for increased 
size and age at maturation. Strong selection for increased age and size at maturation would require 
the use of new fishing strategies, designed to reverse the original selective pressure. These are 
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probably difficult to undertake in practice. Recruitment would thus be unlikely to increase quickly 
after the fishery closure, and fish stocks would have a low chance of rebuilding. Our results support 
this pessimistic option. This suggests that designing sustainable fishing strategies requires not only 
taking into account all the factors influencing stocks dynamics itself, but also accounting for the 
evolutionary consequences of fishing pressure that constitute long-term feedback loops. Hence, we 
advise the use of fishing strategies that take into account the evolutionary effect of fishing, i.e. 
Darwinian fishing strategies (Law and Grey 1989, Heino 1998, Law 2000, Stokes and Law 2000). 
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Table 1. Results of randomization tests for the effects of stock, sex and cohort (temporal trend). In 
the randomization approach, to test for the effect of the variable X, values of this variable are 
shuffled randomly among individuals that retain for the other variables their own values (see text 
for details). To test for an effect of cohort on maturation, cohort is used as variate (continuous 
variable) so that we test for a linear temporal trend in maturation. Randomization tests are applied 
separately for each age. + to denote that a variate as a positive effect on the probability of maturing, 
or ♂<♀ to denote that male have a lower probability of maturing at age and size than female. ns, 
non significant; *, P<0.05; **, P<0.01; GB, Georges Bank; GM, Gulf of Maine; F, female; M, male. 

 

Effect Concerned 
stock and sex Age 1 Age 2 Age 3  Age 4 Age 5 

GB ns M>F* ns ns ns Sex GM ns ns M>F** ns ns 
Males ns GB>GM** ns ns ns Stock 

Females ns GB>GM** ns GM>GB** GM>GB** 
GB Males +** +** +** +* ns 

GB Females +** +** +* +** ns 
GM Males +** +** +** +* ns 

Temporal 
trend 

(cohort) 
GM Females ns ns +* +** +* 
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Table 2. Robustness assessment in the case of a vertical temporal shift of horizontal reaction 
norms (see text for details). Five cases, corresponding to an increase in the year effect (Ysd) on 
maturation, are studied. For each age the mean temporal trend (slope of the relation between 
midpoints and the cohort number averaged across ten replicate data sets) is displayed as well as 
the mean absolute error in this trend. The mean (across all cohorts and replicate data sets) 
reaction norm slope (slope of the relation between midpoints and age) and the corresponding 
mean absolute errors are also displayed.  
 

    Temporal trend Slope
 Age 1  Age 2 Age 3 Age 4  Age 5  
   Mean Error  Mean Error Mean Error Mean Error Mean Error Mean Error

Actual reaction norm 
 -0.50             -0.50 -0.50 -0.50  -0.50 0.00

Estimated reaction norm 
Ysd=2  -0.51 0.13             

               
               
               
               

-0.55 0.07 -0.53 0.08 -0.60 0.14 -0.61 0.20 -0.25 0.85
Ysd=4 -0.42 0.11 -0.48 0.10 -0.53 0.06 -0.52 0.06 -0.53 0.11 -0.30 0.83
Ysd=6 -0.39 0.15 -0.48 0.14 -0.53 0.12 -0.46 0.09 -0.43 0.19 -0.32 1.38
Ysd=8 -0.45 0.29 -0.66 0.27 -0.62 0.20 -0.60 0.18 -0.56 0.18 -0.77 1.60
Ysd=10 -0.28 0.35 -0.39 0.29 -0.42 0.19 -0.36 0.23 -0.50 0.35 0.25 1.39
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Table 3. Robustness assessment in the case of reaction norms of successive cohorts that are more 
and more tilted clockwise (see text for details). Five cases, corresponding to an increase in the year 
effect (Ysd) on maturation, are studied. The mean temporal trend, the mean absolute error in this 
trend and the mean absolute error in the reaction norm slope are displayed (see Table 2 caption). No 
mean value is displayed for the slope of the reaction norm (slope of the relation between midpoints 
and age) because there is a different slope for each cohort. 
 

    Temporal trend Slope
 Age 1 

 
 Age 2 Age 3 Age 4  Age 5  

 Mean Error     Mean Error Mean Error Mean Error Mean Error Error
Actual reaction norm 

 -0.10            -0.20 -0.30 -0.40  -0.50
Estimated reaction norm 

Ysd=2  -0.05 0.15            
              
              
              
              

-0.14 0.12 -0.33 0.11 -0.36 0.11 -0.67 0.21 1.17
Ysd=4 -0.02 0.20 -0.17 0.12 -0.31 0.10 -0.38 0.13 -0.52 0.28 1.52
Ysd=6 -0.07 0.21 -0.15 0.11 -0.36 0.13 -0.34 0.20 -0.67 0.32 1.34
Ysd=8 -0.12 0.18 -0.19 0.19 -0.44 0.19 -0.61 0.33 -0.47 0.35 1.73
Ysd=10 0.01 0.23 -0.18 0.25 -0.27 0.24 -0.43 0.30 -0.55 0.31 2.13
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Table 4. Robustness of the estimation method to the misclassification of individuals into the 
immature and mature groups. As for Table 2, reaction norms are horizontal and shift vertically. The 
results are presented for a given intensity of the yearly effect on maturation (Ysd=4, see Table 2). 
Four cases, corresponding to an increasing bias in the maturity ogive estimation are studied. This 
bias is implemented by multiplying the ogive logit by an increasing factor F, which increases the 
ogive steepness: multiplying the logit by a factor equal to 1.25, 1.5 and 1.75 respectively decreases 
a probability of 25% to 20%, 16% and 13%. In each case, ten replicate data sets have been 
constructed. The same statistics as in Table 2 are displayed. 
 

    Temporal trend Slope
 Age 1  Age 2 Age 3 Age 4  Age 5  
   Mean Error  Mean Error Mean Error Mean Error Mean Error Mean Error

Actual reaction norm 
 -0.50             -0.50 -0.50 -0.50  -0.50 0.00

Estimated reaction norm 
F = 1  -0.41 0.08             

               
              
              

-0.47 0.12 -0.53 0.07 -0.51 0.08 -0.53 0.15 -0.58 1.18
F = 1.25 -0.42 0.11 -0.51 0.10 -0.51 0.06 -0.53 0.10 -0.56 0.20 -0.45 0.83
F=1.5 -0.42 0.11 -0.49 0.09 -0.50 0.05 -0.52 0.06 -0.53 0.10 -0.50 0.84
F=1.75 -0.42 0.11 -0.49 0.09 -0.51 0.04 -0.53 0.06 -0.53 0.10 -0.52 0.84
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Figure 1. Temporal variations in two environmental indices: the mean weight per tow and the 
bottom spring temperature anomaly.  
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Figure 2. Annual growth increments estimated for each age and cohort.         , age 1;              , age 3; 
           , age 5. Missing points correspond to very low growth rates that were estimated to be 
negative. For clarity, curves for ages 2 and 4 are not displayed, but they present similar oscillations 
as ages 1, 3, and 5. 
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Figure 3. Single reaction norms (thick plain line) estimated for the females of the cohort 1980 and 
displayed with the inter-quartile range (thin continuous line) and bootstrapped confidence intervals 
for the midpoints (see method section). The mean size at age is also displayed (doted line).  
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Figure 4. Reaction norms for age and size at maturation averaged over 5 years periods. Reaction 
norms have been estimated separately for males/females and the two stocks.        , cohorts 1970-74; 
             , cohorts 1975-79;           , cohorts 1980-84;           , cohorts 1985-89;           , cohorts 1990-
94;            , cohorts 1995-1999. 
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Figure 5. Temporal trend in the reaction norm for age and size at maturation midpoints. Each curve 
corresponds to a different age. Reaction norms have been estimated separately for males/females 
and the two stocks. Curves are not continuous because it was not possible to estimate some of the 
midpoints due to the sample size.         , age 1;             , age 2;            , age 3;           , age 4;           , 
age 5. 
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Figure 6. Graphic example of robustness tests. (A) For the first test (no age effect), theoretical 
reaction norms are horizontal and shift vertically. (B) For the second test (age effect), reaction 
norms of the successive cohort are more and more tilted clockwise. Five cases, corresponding to an 
increase in the year effect (Ysd) on the reaction norm midpoints have been considered, and two cases 
are here displayed. Because the reaction norms of 30 cohorts can't be displayed on the same figure 
only the reaction norms of 6 evenly spaced cohorts are displayed. Thin doted lines, theoretical 
reaction norms;        , cohort 0;               , cohort 5;            , cohort 10;           , cohort 15;           , 
cohort 20;            , cohort 25. 
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