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Abstract 
In response to increased interest in the Precautionary Approach, various approaches have 
been applied to characterize the uncertainty of fisheries assessment projection results. Using 
three case studies, a comparison of some commonly applied techniques was undertaken to 
determine if different methods give similar perceptions of uncertainty in the short term, with 
the same, or very closely similar structural models. The techniques for estimating statistical 
uncertainty included the delta method, the parametric bootstrap of data, the nonparametric 
bootstrap of residuals and Bayes. Each method was used to derive cumulative frequency 
distributions of SSB for 1998 and of change in SSB for 1998 relative to 1992. These 
comparisons were contrasted against the sensitivity of uncertainty estimates to fundamental 
structural assumptions such as separability. Results displayed measurable and often 
repeatable patterns in differences between methods of estimating uncertainty, suggesting that 
these differences were peculiar to the methodology and assumptions. The delta method 
displayed distributions with longer left tails. Results from Bayes and bootstrap percentile 
methods were similar. Bias adjusted results were more conservative. Often however, 
differences could be greater when fundamental structural assumptions were altered, 
indicating that structural relationships must be either clearly established or proper account 
taken of this model uncertainty. 
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Introduction 
Fisheries management decisions can be conveniently classified into two types. Examples of 
the first type of decision are characterized by questions like "What is the constant fishing 
mortality rate corresponding to Maximum Sustainable Yield?" and "What target fishing 
mortality should be followed in order that the stock should have a less than 5% chance of 
being under (say) 800,000t in ten years' time?" The former question relates to a steady state 
situation while the latter is concerned with a transition from a current state to a desired state. 
An example of the second type of decision is illustrated by the question "What is the catch 
quota corresponding to (say) 20% exploitation rate?" 

The first type of fisheries management decisions are of a strategic nature concerning policies 
or harvest strategies, in contrast to the second type that are tactical in nature concerning the 
immediate implementation of regulatory actions. The resulting policies from strategic 
decisions are often framed in terms of reference points for quantities of interest, e.g. 
minimum acceptable biomass of (say) 200,000t. Tactical decisions are made in the context of 
reference points and are therefore dependent on an established harvest strategy. Strategic and 
tactical decisions are often treated separately because the former require knowledge of 
production dynamics in order to evaluate alternative options while the latter depend largely 
on determination of the current state of the resource. Support for estimates of reference points 
based on modeling production dynamics can be controversial and reference points may be 
based on practical experience and consensus. This analysis focuses on estimation of 
uncertainty for making tactical fisheries management decisions and therefore assumes an 
established harvest strategy with associated reference points. 

Until recently, tactical decisions have been based on provision of scientific advice in the form 
of the "best" point estimate for quantities of interest. For example, the catch quota may have 
been set at that value corresponding to the point estimate of the projected catch assuming the 
established fishing mortality reference point. Three factors, the development of statistical 
methods for estimating stock status, advances in statistical computation techniques permitting 
more realistic assumptions in complex situations and the emphasis placed on taking 
uncertainty into account in the, now widely accepted, Precautionary Approach, have 
stimulated application of risk analyses to fisheries management problems. A diversity of 
approaches have been used to address the estimation of uncertainty in fisheries (Patterson et 
al 1999). These approaches involve a broad range of structural and distributional assumptions 
but also employ different methods for inference. Wade (1999) reviews the strengths and 
weaknesses of three schools of statistical inference, frequentist, Bayesian and likelihood. The 
likelihood approach, perhaps presents the most appealing philosophical framework but poses 
fundamental technical problems and has not been widely applied. This work includes 
application of frequentist and Bayesian methods but likelihood approaches are not 
considered. 

In this paper, we investigate and compare the perceptions of uncertainty for tactical fisheries 
management decisions given the same, or very closely similar, structural models. This 
question is addressed by calculating short-term uncertainty estimates on three real data sets 
for age structured fishery stock assessments, Eastern Georges Bank haddock, North Sea 
plaice and Iberian Peninsula sardine. 

Methods of Estimating Uncertainty 
Both frequentist and Bayesian methods of estimating uncertainty are in common use for 
making probability statements about interest parameters in fisheries assessment problems. 
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Probability statements are understood to be based on the confidence (fiducial) distribution of 
the quantity of interest under repeated sampling for frequentist methods (Efron 1998, 
Schweder and Hjort 1999) and on the posterior distribution of the quantity of interest for 
Bayesian methods. Though the interpretation of these probabilities is different, they serve the 
same purpose and provide the basis of support for decisions under the respective inference 
paradigms. 

Fisheries management interest parameters are often non-linear functions of model parameters 
and fisheries assessment models are not linear in the model parameters. Estimated confidence 
distributions or posterior distributions will be displaced for such models. The frequentist 
notion associated with this characteristic is bias. Adjustment for statistical estimation bias 
was incorporated for some of the frequentist methods. Bayesian analogues for adjustment of a 
displacement are not available. 

Frequentist 
Two generic approaches for obtaining confidence distributions were investigated, delta 
methods and bootstrap methods. The delta method is a technique for deriving approximate 
estimates of variance for parameters arising from complex models. These estimates of 
variance, coupled with some assumption about the sampling distribution of model parameters 
or of the interest parameter, can be used to construct confidence distributions. The bootstrap 
is a data based simulation technique that can be used to obtain confidence distributions of 
interest parameters. This is accomplished by substituting a simple data based estimate for the 
sampling distribution of a parameter. The parametric bootstrap assumes a parametric form of 
the distribution but the distribution is characterized by estimates of its defining parameters 
obtained from the observed data. Non-parametric bootstrap uses the observed data, or 
residuals about the model fit, directly to define the distribution completely. Results for the 
bootstrap methods were based on 1,000 replicates. 

Delta 
The delta method, as used here, involves two steps, initially estimation of statistics for model 
parameters and secondly translation of uncertainty in the model parameters to the fisheries 
management interest parameters. Estimation of model parameter covariance was computed in 
a similar manner, using the common linear approximation (Kennedy and Gentle 1980 p.476), 
except where the XSA algorithm (Darby and Flatman 1994) was applied. Translating 
uncertainty of model parameters to risk for fisheries management interest parameters was 
accomplished either analytically (an) or numerically (num), as described below. The 
analytical implementation also made an adjustment for bias. 

The Delta method requires further assumptions on which inferences are conditioned, in 
addition to those made by the assessment model. The analytical Delta makes an assumption 
about the distribution of the interest parameter, while the numerical Delta makes an 
assumption about the distribution of model parameters.  

The analytical approximation approach was described in Gavaris (1993, 1999). It employs the 
delta method to estimate the variance of interest parameters from the covariance of the model 
parameters. An estimate of bias for the model parameters was obtained using Box’s (1971) 
approximation, which requires the assumption that the errors are normally distributed. Bias of 
interest parameters was derived according to Ratkowsky (1983). Assuming that the interest 
parameter, η, is distributed according to a Gaussian, the confidence distribution of the bias 
adjusted interest parameter was approximated as ( ) ( )( )ηηη ˆ,ˆˆ VarBiasN − . Because the 
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distribution is displaced to adjust for the bias we refer to this as the an-shiftDelta variant. The 
increase in variance due to the variance of the bias adjustment was disregarded. 

The delta method was implemented numerically using a resampling technique. The 
covariance of log surviving population numbers was used to draw random samples from a 
multi-lognormal (Patterson and Melvin 1992). The replicate population numbers were then 
used to derive replicates of the interest parameter with which a confidence distribution was 
constructed. A similar resampling technique was used for the XSA implementation, except 
that the covariances were disregarded, on the assumption that its impact is negligible. The 
calculation was performed by drawing random samples from independent lognormal 
distributions defined by the point estimates of the survivors and their standard errors. 

Parametric bootstrap 
Parametric bootstrap samples were generated by assuming that the indices were distributed 
according to a lognormal characterized by the estimated mean and variance of the 
observations (Restrepo et al 1992). The sample replicates were subjected to the entire 
assessment procedure to obtain replicate estimates of the interest parameter with which a 
confidence distribution was constructed. Efron (1979) introduced the bootstrap as an 
automatic way of obtaining better confidence distributions for complex situations. This 
particular bootstrap technique is referred to as the percentile (perc) method. 

Nonparametric bootstrap 
Ideally, for the nonparametric bootstrap, the observed data would be resampled with 
replacement to generate sample replicates which could be subjected to the estimation 
procedure. Smith and Gavaris (1993) employed this approach, but data limitations may 
complicate routine application. A practical alternative is to resample with replacement from 
the residuals to the model fit and add these to the predicted values to generate replicate 
samples (Efron 1993). An example of such an approach in fisheries assessments is provided 
by Mohn (1993). Because of its reliance on the model fit, this method is referred to as the 
model conditioned bootstrap, though it is nonparametric because it does not require 
specification of a parametric distribution for the residuals. When the residuals are not 
assumed to be homogeneous, the weighted residuals are scaled to the appropriate variance for 
the respective data before being added to the predicted values. This is straightforward for the 
indices which are assumed lognormal but presents some complications for the catch at age 
data when a multinomial is assumed (Annex 1). 

As with the parametric bootstrap, the percentile method is simply based on the confidence 
distribution constructed from the replicates of the interest parameter that are obtained from 
subjecting the model conditioned sample replicates to the estimation procedure. Efron (1982) 
introduced an improvement, the bias corrected (bc) percentile method, that adjusts for 
differences between the median of the bootstrap percentile density function and the estimate 
obtained with the original data sample. Application of the model conditioned bias corrected 
bootstrap method in fisheries assessment is described in Gavaris and Van Eeckhaute (1998). 

Bayes 
The posterior distribution of interest parameters were estimated using the Sampling-
Importance-Resampling (SIR) algorithm described by Rubin (1987) or Markov Chain Monte 
Carlo (MCMC) simulation and graphical models described by Gilks et al. (1996). Sampling 
Importance Resampling uses an importance function of model parameters to obtain 
importance ratios that can be used as weights in resampling. In Markov Chain Monte Carlo, 
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samples are drawn from required distributions, constructed using Markov chains for a long 
time, and averaged to approximate expectations. Application in fisheries assessment of the 
SIR algorithm is described in McAllister et al (1994) and of the MCMC algorithm in 
Patterson (1999). Because SIR and MCMC algorithms are simply alternative numerical 
methods for the same purpose and should give similar results when implemented 
appropriately, we do not distinguish between them. Results for the Bayesian methods were 
based on either 1,000 draws from the posterior distribution (Bayes1) or 100 draws (Bayes2). 

Fisheries Problem 
A typical tactical fisheries management question might be "What is the probability that the 
resulting projected spawning stock biomass will be lower than the established reference for 
alternative catch quotas?" (Figure 1). In mathematical terms, we wish to characterize 

{ }quotaSSBSSB refproj |Pr ≤ . Reference points may be externally prescribed absolutely, e.g. 
200,000t, or they may be prescribed by a functional rule and require estimation, e.g. the 
biomass corresponding to Maximum Sustainable Yield or the estimated biomass in some 
earlier year. When the reference point is also estimated, the uncertainty in that estimate of the 
reference point is conveniently incorporated by considering the quantity of interest to be a 
function of the projected value and the reference value. For example, if we consider the 
difference between the projected value and the reference point, the mathematical form can be 
rearranged as { }quotaSSBSSB refproj |0Pr ≤− . Now the interest parameter to be estimated 
becomes refproj SSBSSB −  instead of simply projSSB . 

As indicated above, risks identified with tactical decisions are largely dependent on the 
uncertainty associated with the estimate of the current stock status. Accordingly, for the 
purpose of this study, it was sufficient to compare probability statements for the quantity of 
interest, e.g. SSB, in the terminal year of the assessment (Figure 2), thereby avoiding the need 
to conduct projections and to explicitly consider the objectives and the harvest strategy. It is 
recognized that the overall risks could be refined by incorporating uncertainty associated with 
forecast weight at age and forecast exploitation pattern by age. Forecast recruitment is 
generally not a major concern with short term projections. 

As noted, uncertainty estimation is conditioned on structural and error distribution 
assumptions. The three studies shared some common fundamentals. All three assessments 
were based on age structured analyses where mortality processes were partitioned into two 
types, fishing mortality associated with the harvest and natural mortality associated with all 
other sources of depletion. Mortality dynamics were governed by the relationships 
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where N is population abundance in numbers, F and M are instantaneous fishing and natural 
mortality rates respectively, C is catch numbers harvested and a and y index age and year 
respectively. In all three studies the natural mortality rate, M, was assumed constant over ages 
and time and was assumed known. Some of the software implementations employed the 
cohort approximation (Pope 1972) to the catch equation, but this is inconsequential here. 

The population analyses were calibrated with indices of abundance. The indices of 
abundance, which were age specific numbers or age aggregated biomass, were assumed to be 
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linked to the respective population quantity by a constant proportional relationship, referred 
to as catchability, q. For estimation methods requiring specification of a parametric 
distribution, the residuals of the indices of abundance about the model fit were assumed to be 
independent and lognormally distributed while non-parametric methods made the assumption 
that the residuals, on the logarithmic scale, were independent and identically distributed. For 
the haddock and sardine study, homogeneity was assumed while for the plaice study, 
homogeneity was achieved by weighting indices according to the relative magnitudes of the 
mean squared residuals for each index source (fleet). 

Though this study was mainly focused on comparison of several methods for estimating 
uncertainty while restricting the underlying structural models to be the same, the implications 
of altering some key structural features of the dynamics were considered to a limited extent. 
It is well recognized that the equations governing mortality dynamics, given above, involve 
more parameters than can be estimated from typical fishery observations. Consequently, 
several approaches have been developed to reduce the dimensionality of the parameter space. 

Fishing mortality dynamics models can be categorized into those that consider error in the 
catch at age to be negligible relative to other observation error and those that admit error in 
the catch at age. Two variants of the former class are prevalent, a Virtual Population Analysis 
(VPA) model with constraints on the oldest age fishing mortality and a VPA with constraints 
on the oldest age index catchability. The F-constrained VPA model, designated VPA/F, 
assumes that the fishing mortality rate for the oldest age is equal to the average fishing 
mortality rate over specified younger ages in the same year, eliminating the need to estimate 
abundance for those year-classes. The q-constrained VPA model was not investigated in this 
study. The separable model, used when admitting error in the catch at age, assumes that 
fishing mortality can be decomposed into independent year effects and age effects. Two 
parametric specifications are in common use for the admitted error distribution of the catch at 
age, lognormal (Deriso et al 1985), and multinomial (Fournier and Archibald 1982)and are 
designated SEP/L and SEP/M respectively. 

The VPA/F assessment models were carried out using various software implementations of 
the ADAPT adaptive framework (Gavaris 1988).  Also, though typically used to implement a 
q-constrained VPA, the XSA extended survivors algorithm (Shepherd 1999) as implemented 
in the Lowestoft assessment suite (Darby and Flatman 1994), was modified to mimic the 
VPA/F model and was applied to the North Sea plaice. Some of the SEP/L assessment 
models were carried out with the ICA integrated catch analysis software (Patterson and 
Melvin 1992). Other assessment models were custom designed. 

Results 
For the three studies, Eastern Georges Bank haddock, North Sea plaice and Iberian Peninsula 
sardine, we compared probability statements for the spawning stock biomass in 1998, 
SSB1998, and for the change of spawning stock biomass in 1998 relative to 1992, (SSB1998 - 
SSB1992)/SSB1992. The three case studies were not subjected to all combinations of the three 
structural model variants and the six methods of estimating uncertainty. Thus we do not have 
a complete experimental design. Rather, emphasis was placed on comparing across 
estimation methods for particular structural models of each case. Table 1 defines the 
acronyms used for the methods and summarizes the combinations that were analyzed. 

We have not faithfully reproduced the assessments for these stocks. For some we have used 
abbreviated data sets. However, it was considered that these altered cases retained the 
essential elements of realistic assessment problems for the purpose of comparing methods for 
estimating uncertainty while simplifying the problems sufficiently to expedite computations. 
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Models were defined to correspond closely to the assessment, within the scope of each 
structural model class. 

Eastern Georges Bank Haddock 
The eastern Georges Bank haddock case was based on the assessment by Gavaris and Van 
Eeckhaute (1998), however, only the DFO spring survey was used with annual catch at age 
data for 1986 to 1997.  

The VPA/F structural models assumed that the fishing mortality for age 8 was equal to the 
average fishing mortality, weighted by population number, on ages 4 to 7 in the same year. 
The SEP/L structural models assumed a common selectivity-at-age pattern through the entire 
time period, 1986 to 1997, and the selectivity for age 8 was set equal to one. One of the 
SEP/L analyses, labeled Bayes2, constrained the fishing mortality on the last two ages, 7 and 
8, to be equal and did not include age 1. The two Bayes variants employed different prior 
assumptions for model parameters (Table 2). The percPB calculations used standard errors 
derived from the sampling variances for each age in each year of the survey.  

SSB in 1998 
Results are summarized in Table 3 and Figs. 3 - 4. Within the VPA/F structural models, the 
standard deviation of the distributions were similar for all estimation methods except percPB. 
Though this summary statistic of dispersion suggests a common perception of spread, 
examination of the median scaled percentiles revealed some finer differences. While median 
scaled 25th and 75th percentiles were quite similar, the an-shiftDelta results had a longer lower 
tail resulting in a smaller 5th percentile and the bcNPB results were somewhat tighter and 
more asymmetric. The scaled percentiles were very tight and almost symmetric for the 
percPB method. The mean and median were lower for the shiftDelta and bcNPB, suggesting 
that the location estimate is affected by non-linearity induced estimation bias. Consequently, 
the percentiles and the distributions for shiftDelta and bcNPB  were both centered to the left 
of the others. The percentiles and the distributions for percNPB and Bayes were virtually 
identical. The percentiles for percPB were very tight and the distribution was the least 
slanted. Confidence statements based on the percPB method would be markedly different. 
Excluding the percPB results, confidence statements for outer probability levels, i.e. 5th and 
95th percentiles, were substantially different with some critical values deviating by almost 
10,000t while confidence statements for central probability levels, i.e. 25th and 75th 
percentiles, were more similar but some critical values still deviated by as much as about 
7,000t. 

Within the SEP/L structural model, the standard deviation of distributions showed greater 
differences, though results for numDelta and Bayes1 were almost identical. As with the 
VPA/F results, the numDelta median scaled percentiles were smaller reflecting the longer 
lower tail. The scaled percentiles for percNPB, bcNPB and Bayes1 were fairly similar with 
the exception of the very large value for the 95th percentile for percNPB. The scaled 
percentiles for Bayes2 were substantially tighter. The percentiles and distribution for the 
bcNPB were shifted to the left of the results for others, again suggesting that estimation bias 
had some influence. The percentiles and distribution from Bayes2 indicated greater precision 
than any of the other methods. While critical values for confidence statements at the 25th or 
75th probability levels only differed by about 5,000t, those at the 5th and 95th probability 
levels differed by as much as 37,000t. The differences between the two Bayes variants 
suggest an important influence of choice of priors on results and/or that the additional 
constraint and the exclusion of age 1 for the Bayes2 formulation were consequential. 
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Results from the VPA/F structural models were generally centered about lower SSB, 
displayed smaller standard deviation and had tighter scaled percentiles than those for the 
SEP/L structural models. The distributions for SEP/L models showed longer upper tails. 
Confidence statements were somewhat more divergent between structural models than 
within. 

Change in 1998 SSB relative to 1992 SSB 
Results are summarized in Table 3 and Figs. 5-6. Within the VPA/F structural models, the 
patterns in dispersion, location and distributions of relative change in SSB mirrored those for 
SSB in 1998 very closely. Notably, even the relative dispersion, scaled to the median, was not 
too dissimilar.  

In contrast, within the SEP/L structural models, the patterns in dispersion, location and 
distributions of relative change in SSB were substantially different than those for SSB in 
1998. The standard deviation, scaled percentiles, percentiles and distributions for percNPB, 
bcNPB and Bayes1 were virtually identical. The similarity between percNPB and bcNPB 
results suggests that statistical estimation bias was not significant here. The standard 
deviations and scaled percentiles for numDelta and Bayes2 results suggested substantially 
less precision in the estimates. However the distribution for numDelta was centered about a 
lower value and that for Bayes2 was centered about a higher value than distributions for 
percNPB, bcNPB and Bayes1. Confidence statements derived from percNPB, bcNPB and 
Bayes1 would be very similar while those from numDelta and Bayes2 would differ markedly 
from the others and between themselves. The distributions for the two Bayes variants diverge 
as probability increases.  

SEP/L structural models resulted in lower estimated relative change for SSB than the VPA/F 
structural models. SEP/L models in combination with percNPB, bcNPB and Bayes1 
estimation methods indicated greater precision for estimated change in SSB than the results 
from VPA/F models while SEP/L models in combination with numDelta and Bayes2 
indicated the contrary. 

North Sea Plaice 
The North Sea plaice case is based on the assessment done by the ICES working group (ICES 
1998) and uses catch data for ages 0 - 13+ over the years 1988 - 1997, two stock size indices 
at age from trawl surveys and two stock size indices at age from fishery catch and effort data. 
Catch at age data is available for years prior to 1988 for stock reconstruction but as there 
were no stock size indices for these years, they were excluded from analyses done here. 

The VPA/F structural models assumed that fishing mortality for age 12 and the 13+ age 
group were equal to the arithmetic average for ages 10 and 11 in the same year. The SEP/L 
structural models assumed a common selectivity-at-age pattern through the entire time 
period, 1988 to 1997, and assumed that selectivity on age 12 and the 13+ age group were 
equal to the average for ages 9 to 11. As with haddock, the two Bayes variants employed 
different prior assumptions for model parameters (Table 2). Index observations were 
weighted according to the inverse of the mean squared residuals for each of the four index 
sources (fleets) to account for potential heterogeneity. Unlike the textbook approach for 
bootstrap that is not model conditioned, where standard errors are calculated from the 
observed data, estimates of standard error from the model fit were used to generate random 
deviates that were added to the observations to obtain replicates for the percPB estimation 
method. Estimated model conditioned variance is generally greater than sampling variance, 
so this implementation is a hybrid. 
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SSB in 1998 
Results are summarized in Table 4 and Figs. 7-8. Within the VPA/F structural models, the 
standard deviation of the distributions were very similar for all estimation methods. The 
percPB results were not markedly different here from the other methods, where the variance 
used to generate replicates was obtained from the model fit. As with haddock, while median 
scaled 25th and 75th percentiles were quite similar, the an-shiftDelta results had the smallest 
5th percentile and the bcNPB results were somewhat tighter and more asymmetric. The mean 
and median were lower for the shiftDelta and bcNPB, suggesting that the location estimate is 
affected by non-linearity induced estimation bias. Consequently, the percentiles and the 
distributions for shiftDelta and bcNPB  were both centered to the left of the others. The 
percentiles and the distributions for numDelta, percPB,  percNPB and Bayes were virtually 
alike. Confidence statements for outer probability levels, i.e. 5th and 95th percentiles, were 
somewhat different with some critical values deviating by about 23,000t while confidence 
statements for central probability levels, i.e. 25th and 75th percentiles, were more similar but 
some critical values still deviated by about 16,000t. 

Within the SEP/L structural model, the standard deviation of distributions showed greater 
differences, with the percNPB and bcNPB results displaying a substantially larger magnitude. 
For this case, the numDelta median scaled 5th percentiles were not smaller. There was fair 
deviation among the scaled percentiles for all estimation methods. Once again however, the 
percentiles and distribution from Bayes2 indicated greater precision than any of the other 
methods. The largest deviation was between the two Bayes variants, suggesting a dominant 
influence of choice of priors on results. 

Results from the both the VPA/F and SEP/L structural models were generally centered about 
similar SSB. Confidence statements were very divergent within SEP/L structural models, 
precluding meaningful comparisons between the two structural model classes. 

Change in 1998 SSB relative to 1992 SSB 
Results are summarized in Table 4 and Figs. 9-10. Within the VPA/F structural model, the 
patterns of differences between distribution characteristics from the various estimation 
methods were almost identical to those observed for SSB. Within the SEP/L structural model, 
the percNPB and the bcNPB did not display a larger standard deviation, as was observed for 
SSB. The numDelta was more characteristic, displaying smaller a smaller median scaled 5th 
percentile and a distribution with a longer lower tail. The percNPB and the bcNPB were in 
much closer agreement, suggesting that the estimation bias for relative change in SSB was not 
very important here. The Bayes1 distribution was very similar to the percNPB and the 
bcNPB distributions while that for the numDelta was in closer agreement with the Bayes 2 
results. 

The distributions for SEP/L structural models were centered about lower relative change in 
SSB than those of the VPA/F structural models, although there was as much difference within 
the SEP/L results as between the two model classes. The standard deviation and median 
scaled percentiles were fairly similar across all methods from both structural models, with the 
exception perhaps of the Bayes2 results which indicated greater precision. 

Iberian Peninsula Sardine 
The Iberian Peninsula sardine case is based on the assessment made by ICES (1999) and uses 
catch for age 0 - 6+ over the years 1977 - 1997, two acoustic surveys with abundance at age 
for ages 1 - 6+, an egg index of spawning biomass and two CPUE indices of spawning 
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biomass (ICES 1999). The catchability for the egg survey was assumed to be one, i.e. 
considered to be an absolute index rather than a relative index, in contrast to all other cases 
where the catchabilities were estimated. 

The SEP/L and SEP/M structural models both assumed two selectivity-at-age patterns, one 
for the period 1986 to 1989 and another for the period 1990 to 1997. Further, the selectivity 
for the 6+ age group was set to equal one. The VPA/F structural models assumed that the 
fishing mortality on the 6+ age group was equal to the fishing mortality on age 5. 

SSB in 1998 
Results are summarized in Table 5 and Figs. 11-13. Within the VPA/F structural model, the 
standard deviation of the distributions were similar for all estimation methods applied 
although somewhat smaller for the bcNPB method and higher for the Bayes method. Thus 
these methods provided a fairly comparable perception of dispersion. The scaled percentiles 
were similar at the 25th and 75th percentiles though the bcNPB was tighter and the Bayes was 
most assymetric. There was more divergence at the 5th and 95th scaled percentiles with the 
an-shiftDelta having a smaller 5th percentile and the Bayes results having a larger 95th 
percentile. The mean and median were lower for the shiftDelta and bcNPB, suggesting that 
the location estimate is affected by non-linearity induced estimation bias. While the 
percentiles and distributions for the an-shiftDelta and bcNPB  were both centered to the left 
of the others, the bcNPB percentiles were tighter while the shiftDelta displayed a long left 
tail. The percentiles and the distributions for percNPB and Bayes were virtually identical 
with a somewhat longer upper tail for the Bayes results. Confidence statements for outer 
probability levels, i.e. 5th and 95th percentiles, were substantially different with critical values 
being separated by over 100,000t while confidence statements for central probability levels, 
i.e. 25th and 75th percentiles, were more similar but still separated by as much as about 
70,000t. 

Within the SEP/L structural models, the standard deviation of distributions were similar with 
bcNPB being lowest and numDelta being highest. The scaled percentiles were also very 
similar, though the numDelta and Bayes results had smaller 5th percentiles and larger 95th 
percentiles. The mean and median for the bcNPB were lower than the other methods, 
indicating an effect from bias correction. The percentiles and distributions were not too dis-
similar though the results for Bayes were centered about a substantially higher SSB. Results 
for numDelta displayed a longer lower tail and those for bcNPB were centered about a lower 
SSB. As with the VPA/F structural model results, critical levels of confidence statements for 
outer probability levels differed substantially, by about 85,000t, and differences at central 
probability levels were still notable, but only by about 60,000t.  

Within the SEP/M structural models, the characteristics of the distributions, standard 
deviation, scaled percentiles, means, medians and percentiles were very similar. Confidence 
statements for this class of model would be similar and very tight from the three estimation 
methods applied, percNPB, bcNPB and Bayes. Estimation bias did not appear to be 
significant in this case. The Bayes results display a peculiar step behaviour at the upper tail. 

Results from the VPA/F structural models were generally centered about higher SSB, 
displayed larger standard deviation and had wider scaled percentiles than those for the SEP/L 
and SEP/M structural models. The perception of lower dispersion by the SEP/L and SEP/M 
models is notable considering that they additionally admit uncertainty in the catch at age data. 
Except in a few instances, the medians from the VPA/F, and the separable models lie outside 
or very near to critical points for each others' 90% probability interval, indicating that 
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uncertainty due to choice of structural model is larger than statistical uncertainty conditioned 
on a particular structural model. 

Change in 1998 SSB relative to 1992 SSB 
Results are summarized in Table 5 and Fig. 14-16. For all three classes of structural model, 
VPA/F, SEP/L and SEP/M, the patterns in dispersion, location, percentiles and shape of 
distributions for relative change in SSB mirrored those for SSB in 1998 very closely.  

Results for the VPA/F structural models were generally centered about highest relative 
change in SSB, while results for SEP/L were lowest and those for SEP/M were intermediate. 
The VPA/F structural models also displayed larger standard deviation and had wider scaled 
percentiles than those for the SEP/L and SEP/M structural models, but the differences were 
not as marked as for SSB. In contrast to the pattern for SSB, for relative change in SSB the 
medians from the VPA/F, and the separable models generally lie within each others' 90% 
probability interval. Indeed, the distributions for Bayes-SEP/M is very similar to that for 
bcNPB-VPA/F at lower probability levels, diverging somewhat at higher probability levels. 

Discussion 
Delta, bootstrap and Bayesian methods for making probabilistic inferences about fisheries 
management interest parameters are in common use. Almost invariably, the choice of 
estimation method is not discussed. Quite often, the estimation method is selected on the 
basis of ease with which it can handle particular structural conditioning choices. However, 
this is not a particularly compelling rational as techniques have been developed for all these 
estimation methods to handle most structural conditioning situations. It is pertinent therefore 
to ask if prevalent variants of these estimation methods result in similar inferences when the 
same structural models are used. 

The results demonstrate that there can be differences in the characteristics of confidence and 
posterior distributions obtained with the different estimation methods, in both location 
(central tendency) and dispersion (spread), even when the same structural model is used. The 
magnitude of the differences can be substantial. For example, the difference in the medians of 
the distributions ranged as high as 20% of the value of the smallest median in most structural 
models. Differences were often even greater at the tails of the distributions than at central 
probability levels. 

Some regular patterns could be detected in the differences, although these patterns were not 
faithful for all cases. The patterns appeared to be more consistent and predictable for the 
VPA/F structural model. Bias adjusted distributions, i.e. an-shiftDelta and bcNPB, were 
displaced towards lower SSB and lower relative change in SSB relative to other methods. This 
suggests a measurable and systematic effect of estimation bias, though less for rellative 
change in SSB. Both Delta variants tended to have longer lower tails in the distribution, 
though this effect was not as great for the numerical method. This is an indication that the 
distributions of the interest parameters are not well approximated by a symmetric Gaussian 
and that even a lognormal distribution for population survivor abundance may not capture the 
appropriate degree of asymmetry. Sinclair and Gavaris (1996) also found that results from 
analytical and numerical delta methods, where the same structural model was used, were 
largely comparable but there were notable differences for one interest parameter at lower 
probabilities. In several instances, and most notably with the VPA/F structural models, the 
Bayes distributions corresponded fairly closely with the percNPB results. One can conclude 
that the particular priors used in these calculations were not very informative and did not 
influence results. This is not a general result however, as evidenced by the divergence in 
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distributions when different priors were used with the SEP/L structural models. The 
divergence between the parametric bootstrap and other methods for haddock needs further 
investigation. The similarity in results for plaice also merit examination because the variances 
used to generate the deviates might have been expected to result in greater spread for the 
parametric bootstrap. The direction of the difference between posterior distributions for SSB 
using Bayes1 and Bayes2 are in agreement with previous investigations on the impact of 
priors (Walters and Ludwig 1984). 

We intentionally investigated an absolute interest parameter, SSB, and a relative interest 
parameter, relative change in SSB, to determine if there was a difference in behaviour. It 
might be presumed that relative quantities can be determined with greater precision. While 
this may occur, it is not a general phenomenon. Our results indicate that the dispersion for the 
distributions of relative change in SSB was similar to those for SSB. Further, for the structural 
models investigated, the patterns of differences between estimation methods that were 
observed for SSB were closely mimicked by those for relative change in SSB. From these 
results we may infer that the differences between the estimation methods are likely to be 
manifest in most fisheries management interest parameters. A notable characteristic however, 
was the diminished differences in the distributions across structural models for relative 
change in SSB compared to absolute magnitude of SSB, suggesting that relative measures 
may be more robust to model choice. 

Although not a focus of this study, it is noteworthy that there were great differences in the 
location (central tendency) of distributions across structural models, often larger than some of 
the differences between estimation methods within a structural model. Higher or lower 
medians were not associated with any particular structural model. For example, distributions 
of SSB were centered about higher values with the SEP/L model for haddock, but for sardine, 
the distributions were centered about higher values with the VPA/F structural model. The 
variation in dispersion (spread) among distributions seemed more similar between estimation 
methods within structural models than between structural models. More importantly however, 
any particular structural model was not associated with lesser or greater precision. For 
example, standard deviation of the distributions or median scaled inter-percentile ranges of 
SSB were tighter with the SEP/L structural model for sardine, but for haddock, they were 
tighter with the VPA/F structural model. The very close agreement between distributions for 
different estimation methods with the SEP/M structural model is a peculiar result. The 
comparisons are not sufficient to draw any conclusions but this phenomenon is worthy of 
further study. 

Even within a model class and particular estimation method, subtle alterations of structure 
and assumptions can result in substantial impact on the distribution characteristics of fisheries 
management interest parameters. This is illustrated with North Sea plaice using the SEP/L 
structural model and the Bayes method of estimating uncertainty. There were marked 
differences between distributions for five alternative analyses (Fig. 17). The Bayes1 and 
Bayes2 analyses were described before. The other analyses are based on Bayes2 but Bayes2 
& M includes estimation of M, the power q analysis uses a power relationship for catchability 
rather than a proportional relationship and the RWF analysis incorporates a random walk for 
fishing mortality. The random walk model is similar to the separable model but permits 
stochastic variation from this fixed effects pattern for fishing mortality (Ianelli and Fournier 
1998). 

It is important to recognize that admitting additional error in the data does not correspond to 
lower precision for the fisheries management interest parameters. There may be a 
predisposition to assume that separable models, that admit error in the catch at age, will result 
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in greater uncertainty for interest parameters, but this is not the case. The degree of 
uncertainty in the interest parameter is more closely associated with the fit of the specific data 
to a particular structural model. The greater dispersion in the results for haddock with the 
SEP/L structural model compared to the VPA/F model was probably due to the marked shift 
in the exploitation pattern at age which occurred in the early 1990s, resulting in a poor fit to a 
model that specified a common age effect over all years. 

It is clear that the choice of structural model has profound effects on inferences about 
fisheries management interest parameters. Careful consideration should be given to all 
available diagnostics for determining the most suitable model, consistent with observed data. 
Techniques, particularly within the Bayesian paradigm, are available to admit more than one 
structural model (Patterson 1999). These approaches may offer advantages in cases where the 
data do not strongly favour any particular model. Although greater attention has been given 
lately to model averaging with frequentist methods (Buckland et al 1997), development of 
established techniques that can be applied to fishery stock assessment models requires further 
work. When the data are not informative with respect to model selection, choice of a single 
model or relative preference among competing models may be based on subjective judgement 
or expert opinion. Inferences are conditioned on these choices and it should be made clear 
where subjectivity has an influence versus where observed data are dominant. Proper 
interpretation of probabilistic inferential statements requires extra care when model 
indeterminacy is involved. 

Though the choice of structural model can have profound impact on the estimation of 
uncertainty, the regularity in patterns between estimation methods suggests that use of a 
particular method can have predictable influence on results. Delta methods, and particularly 
the numerical variant, appear to approximate distributions reasonably well but may not 
capture the degree of asymmetry indicated by bootstrap and Bayes methods. Gavaris (1999) 
noted a similar pattern when comparing the analytical variant of the Delta method to 
bootstrap results. Consequently, inferences at low probability levels are likely to be 
inaccurate. Delta methods are however, simple to implement and the least compute intensive 
approach. The similarity in results between nonparametric percentile bootstrap and Bayes 
method could have been anticipated because non-informative priors were used and the 
maximum likelihood for lognormal index errors is equivalent to a nonparametric least squares 
solution on log transformed indices. This cannot be generalized however, and other 
distributions have been assumed for other stock assessments. Potential sensitivity to 
parametric assumptions about error distributions, as evidenced by differences between SEP/L 
and SEP/M results identifies a possible advantage of nonparametric approaches, an option not 
available in Bayesian methods. The close agreement between Bayes and percNPB coupled 
with the difference between these and bcNPB suggests that estimation bias may displace 
distributions. Point estimates of bias using Box’s (1971) approximation and bootstrap 
compared favourably for these cases, suggesting that the bias was reasonably well 
determined. Handling this type of displacement for Bayes methods is unclear. Finally, though 
relative interest parameters do not offer any respite from differences between estimation 
methods, they appear to be more robust to structural model choice. Considering the impact of 
model choice on inferences, it may be well worth framing fisheries management advice in 
terms of relative measures when possible.  

It is not clear how robust the parametric methods are to mispecification of error distributions. 
Nonparametric approaches are attractive because they relax the requirement to accurately 
specify the error distributions. 
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Conclusions 
These results lead to the conclusion that choice of estimation method can have an appreciable 
impact on the perception of risks associated with the consequences of fisheries management 
decisions. Although further evaluation is required to understand the patterns of differences, 
some of the more regular features suggest the following preliminary interpretations. Delta 
methods  did not capture the assymetry of distributions, thereby resulting in longer lower tails 
and smaller lower critical values for confidence intervals. This was unimportant for well 
estimated interest parameters, as in the plaice case. Bias adjustment is necessary to account 
for possible non-linearity induced displacement. Bias adjusted methods can shift distributions 
appreciably, though less so for relative quantities. The difficulty in addressing non-linearity 
induced bias with Bayesian methods is a concern.  

Within a structural model, the range in percentiles for SSB (scaled to the average median) was 
fairly similar at the 25th, 50th and 75th percentiles, while it was typically, but not always, 
larger at the 5th and 95th percentiles. The scaled range at central probabilities was about 20% 
of the median except for plaice with the VPA/F structural model and sardine with the SEP/M 
structural model where it was less than 10%. The pattern was similar for range in SSB change 
but there was more diversity across structural models and cases. The range in SSB change at 
central probabilities varied from a few percent change to almost 100% change.  

 Haddock Plaice Sardine 
 VPA/F SEP/L VPA/F SEP/L VPA/F SEP/L SEP/M 
scaled range for 
SSB 

      

5 0.32 0.19 0.09 0.09 0.37 0.22 0.04 
25 0.19 0.14 0.06 0.13 0.24 0.21 0.04 
median 0.17 0.18 0.05 0.21 0.21 0.24 0.07 
75 0.20 0.22 0.05 0.26 0.22 0.27 0.07 
95 0.39 0.94 0.09 0.36 0.43 0.38 0.23 
        
range for (SSB1998 – SSB1992)/SSB1992      
5 0.89 1.17 0.08 0.13 0.37 0.20 0.01 
25 0.52 1.02 0.05 0.11 0.24 0.19 0.03 
median 0.46 0.93 0.04 0.11 0.21 0.16 0.01 
75 0.46 0.81 0.04 0.14 0.22 0.15 0.03 
95 1.02 1.36 0.07 0.20 0.43 0.19 0.10 
 

Very broadly, these results suggest that the perceptions of probabilities and risks may be 
dependent on the chosen uncertainty assessment method by an amount of the order of 20% in 
the central part of the distributions, and that probabilities of the order of 5% and 95% are too 
dependent on methdology to be presented reliably. 
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Table 1. Summary of combinations of estimation methods with structural models that were analyzed 
for each case study. 

Haddock 
 an-shiftDelta numDelta percPB percNPB bcNPB Bayes 

VPA/F X  X X X X 
SEP/L  X  X X X 

 
Plaice 

 an-shiftDelta numDelta perc PB perc NPB bcNPB Bayes 
VPA/F X X X X X X 
SEP/L  X  X X X 

 
Sardine 

 an-shiftDelta numDelta perc PB perc NPB bcNPB Bayes 
VPA/F X   X X X 
SEP/L  X  X X X 
SEP/M    X X X 
an-shiftDelta : bias adjusted analytical delta 
numDelta : numerical delta 
percPB : parametric bootstrap 
percNPB : nonparametric bootstrap 
bcNPB  : bias adjusted nonparametric bootstrap 
Bayes  : Bayesian 
 
 
Table 2. Priors used in the two Bayes variants for analysis of the haddock case using the VPA/F 
structural model. The notation U(a,b) denotes the uniform distribution on the interval from a to b. 

Bayes1 Bayes2 

Parameter Prior distribution Parameter Prior distribution 

8,..,2,1:ln ,1986 =aN a  U(-∞, ∞) 8,..,2: 86, =aN a  U(0,107) 

98,..,88,1987:ln 1, =yN y  U(-∞, ∞) 98,...,87: 1 =yN y  U(0,107) 

97,..,87,1986:ln =yFy  U(-∞, ∞) Fy : y=86,…,97 U(0,10) 

7,..,2,1:ln =aS a  U(-∞, ∞) sa : a=2,…,7 U(0,2) 

8..,2,1:ln =aqa  U(-∞, ∞) q,a : a=2,…,8 U(0,2) 

2
1σ  (index) 2

1

1
σ

∝  2
1σ  (index) U(0,2) 

2
2σ  (catch-at-age) 2

2

1
σ

∝  2
2σ  (catch-at-age) U(0,2) 
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Table 3. Comparison of characteristics for the distribution of SSB in 1998 and for the distribution of change for SSB in 1998 relative to 1992 from combinations of structural 
model and uncertainty estimation method applied to the haddock case. 

Structural Model VPA/F SEP/L 
Uncertainty 
Estimation 

an-shift 
Delta 

percPB percNPB bcNPB Bayes num 
Delta 

percNPB bcNPB Bayes1 Bayes2 

SSB1998           
mean 34800 37874 42278 37627 41565 45819 50027 44077 50354 43449 
median 34800 37757 41247 36712 40479 43877 43180 38905 46539 40880 
Std. Dev. 9275 3896 9401 8463 9784 17271 25081 20145 17192 14295 
5th percentile 19459 31640 28399 25304 27287 22521 27801 25418 30618 27739 
25th percentile 28514 35087 35584 31772 34515 32792 35014 32620 38632 34898 
75th percentile 41085 40367 47929 42632 46914 55308 54982 48935 58262 48930 
95th percentile 50141 44534 59590 52868 59327 77689 104585 77630 82016 64660 
scaled to median           
5th percentile -15341 -6117 -12848 -11408 -13193 -21355 -15379 -13487 -15921 -13141 
25th percentile -6286 -2670 -5664 -4939 -5965 -11084 -8167 -6285 -7907 -5983 
75th percentile 6286 2610 6681 5920 6434 11431 11802 10030 11723 8050 
95th percentile 15341 6777 18343 16156 18848 33812 61405 38725 35477 23780 
(SSB1998-SSB1992)/SSB1992          
mean 2.20 2.45 2.70 2.34 2.68 1.34 1.71 1.78 1.70 2.24 
median 2.20 2.44 2.67 2.32 2.61 1.20 1.64 1.72 1.67 2.10 
Std. Dev. 0.68 0.31 0.65 0.60 0.72 0.99 0.48 0.50 0.51 1.11 
5th percentile 1.07 1.96 1.68 1.42 1.61 -0.06 1.00 1.06 0.95 1.11 
25th percentile 1.74 2.23 2.26 1.91 2.16 0.64 1.36 1.43 1.35 1.66 
75th percentile 2.66 2.65 3.08 2.72 3.11 1.90 1.99 2.09 2.00 2.71 
95th percentile 3.33 2.97 3.85 3.41 3.99 3.18 2.58 2.66 2.57 3.93 
scaled to median           
5th percentile -1.13 -0.48 -0.99 -0.90 -0.99 -1.26 -0.64 -0.66 -0.71 -1.02 
25th percentile -0.46 -0.21 -0.40 -0.40 -0.44 -0.56 -0.28 -0.29 -0.32 -0.48 
75th percentile 0.46 0.21 0.42 0.40 0.50 0.70 0.35 0.37 0.34 0.58 
95th percentile 1.13 0.53 1.18 1.09 1.39 1.98 0.94 0.94 0.91 1.80 
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Table 4. Comparison of characteristics for the distribution of SSB in 1998 and for the distribution of change for SSB in 1998 relative to 1992 for combinations of 
somtructural model and uncertainty estimation method applied to the plaice case. 

Structural Model VPA/F SEP/L 
Uncertainty 
Estimation 

an-shift 
Delta 

num 
Delta 

percPB percNPB bcNPB Bayes num 
Delta 

percNPB bcNPB Bayes1 Bayes2 

SSB1998            
mean 239236 253427 254402 252031 243955 250750 205465 246756 216878 245538 201831 
median 239236 249954 251687 249377 241636 246545 204888 233010 211950 243999 198800 
Std. Dev. 28667 29459 27301 30217 28184 31544 21347 102288 70293 41017 24069 
5th percentile 191819 211380 214502 209160 204357 206972 171419 183690 164510 184062 169400 
25th percentile 219808 231964 235391 231375 224854 228593 190194 211890 192490 214998 185600 
75th percentile 258663 271271 270918 268091 259502 268360 219378 259230 233330 270699 213400 
95th percentile 286652 304397 301788 305914 291844 307951 241703 317660 272830 318526 239300 
scaled to median            
5th percentile -47416 -38574 -37185 -40217 -37279 -39573 -33469 -49320 -47440 -59937 -29400 
25th percentile -19428 -17990 -16296 -18002 -16782 -17952 -14694 -21120 -19460 -29001 -13200 
75th percentile 19428 21317 19231 18714 17866 21815 14490 26220 21380 26700 14600 
95th percentile 47416 54443 50101 56537 50208 61406 36815 84650 60880 74527 40500 

(SSB1998-SSB1992)/SSB1992           
mean -0.21 -0.16 -0.15 -0.16 -0.19 -0.17 -0.38 -0.26 -0.28 -0.26 -0.38 
median -0.21 -0.18 -0.16 -0.17 -0.20 -0.18 -0.38 -0.28 -0.29 -0.27 -0.38 
Std. Dev. 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.09 0.06 
5th percentile -0.36 -0.30 -0.29 -0.30 -0.32 -0.31 -0.52 -0.39 -0.41 -0.41 -0.46 
25th percentile -0.27 -0.23 -0.22 -0.23 -0.25 -0.24 -0.44 -0.33 -0.34 -0.33 -0.42 
75th percentile -0.14 -0.11 -0.10 -0.11 -0.14 -0.11 -0.32 -0.22 -0.23 -0.21 -0.35 
95th percentile -0.05 0.00 0.00 0.02 -0.03 0.02 -0.22 -0.09 -0.11 -0.10 -0.29 
scaled to median            
5th percentile -0.16 -0.13 -0.12 -0.13 -0.12 -0.13 -0.15 -0.11 -0.12 -0.14 -0.08 
25th percentile -0.06 -0.06 -0.05 -0.06 -0.06 -0.06 -0.06 -0.05 -0.05 -0.05 -0.04 
75th percentile 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.03 
95th percentile 0.16 0.18 0.16 0.20 0.17 0.21 0.16 0.19 0.18 0.18 0.09 
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Table 5. Comparison of characteristics for the distribution of SSB in 1998 and for the distribution of change for SSB in 1998 relative to 1992 from combinations of structural 
model and uncertainty estimation method applied to the sardine case.  

Structural Model VPA/F SEP/L SEP/M 
Uncertainty 
Estimation 

an-shift 
Delta 

percNPB bcNPB Bayes num 
Delta  

percNPB bcNPB Bayes percNPB bcNPB Bayes 

SSB1998            
mean 304 390 336 397 226 231 211 268 274 264 284 
median 304 375 322 369 218 224 203 258 263 255 273 
Std. Dev. 126 131 112 142 75 60 56 70 66 64 78 
5th percentile 96 218 191 222 122 149 139 172 181 173 183 
25th percentile 219 295 256 302 173 186 172 220 229 222 231 
75th percentile 390 452 392 464 267 266 244 305 307 297 316 
95th percentile 513 629 531 659 362 337 310 395 396 381 442 
scaled to median            
5th percentile -208 -157 -131 -147 -96 -75 -65 -86 -83 -81 -90 
25th percentile -85 -80 -66 -67 -45 -37 -32 -38 -35 -33 -42 
75th percentile 85 77 71 96 49 43 40 47 44 43 43 
95th percentile 208 254 209 290 144 113 107 137 132 127 169 
(SSB1998-SSB1992)/SSB1992           
mean -0.092 0.157 0.000 0.180 -0.396 -0.350 -0.373 -0.245 -0.131 -0.135 -0.134 
median -0.092 0.114 -0.038 0.098 -0.429 -0.375 -0.396 -0.266 -0.165 -0.169 -0.160 
Std. Dev. 0.374 0.389 0.333 0.421 0.231 0.164 0.158 0.188 0.207 0.206 0.227 
5th percentile -0.711 -0.357 -0.428 -0.342 -0.708 -0.572 -0.584 -0.509 -0.428 -0.429 -0.433 
25th percentile -0.345 -0.124 -0.236 -0.101 -0.559 -0.465 -0.485 -0.374 -0.271 -0.275 -0.298 
75th percentile 0.162 0.344 0.170 0.381 -0.273 -0.258 -0.289 -0.135 -0.013 -0.016 -0.042 
95th percentile 0.527 0.865 0.583 0.959 0.029 -0.049 -0.087 0.107 0.238 0.228 0.327 
scaled to median            
5th percentile -0.619 -0.471 -0.389 -0.440 -0.278 -0.197 -0.188 -0.243 -0.263 -0.260 -0.273 
25th percentile -0.254 -0.237 -0.197 -0.199 -0.130 -0.091 -0.088 -0.108 -0.106 -0.106 -0.138 
75th percentile 0.254 0.231 0.209 0.283 0.157 0.117 0.108 0.131 0.152 0.153 0.118 
95th percentile 0.619 0.752 0.621 0.861 0.458 0.326 0.310 0.373 0.403 0.397 0.487 
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Figure 1. Characterization of the risk that projected spawning stock biomass will be less than its 
associated reference level for alternative catch quotas. 
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Figure 2. Confidence distribution (frequentist) or posterior distribution (Bayesian) for an interest 
parameter, in this example, spawning stock biomass in the terminal year. 
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Figure 3. Distributions for haddock spawning stock biomass in 1998, calculated using a VPA/F 
structural model in combination with various methods of estimating uncertainty. 
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Figure 4. Distributions for haddock spawning stock biomass in 1998, calculated using a SEP/L 
structural model in combination with various methods of estimating uncertainty. 
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Figure 5. Distributions for change in haddock spawning stock biomass in 1998 relative to 1992, 
calculated using a VPA/F structural model in combination with various methods of estimating 
uncertainty. 
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Figure 6. Distributions for change in haddock spawning stock biomass in 1998 relative to 1992, 
calculated using a SEP/L structural model in combination with various methods of estimating 
uncertainty. 
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Figure 7. Distributions for plaice spawning stock biomass in 1998, calculated using a VPA/F structural 
model in combination with various methods of estimating uncertainty. 
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Figure 8. Distributions for plaice spawning stock biomass in 1998, calculated using a SEP/L structural 
model in combination with various methods of estimating uncertainty. 
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Figure 9. Distributions for change in plaice spawning stock biomass in 1998 relative to 1992, 
calculated using a VPA/F structural model in combination with various methods of estimating 
uncertainty. 
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Figure 10. Distributions for change in plaice spawning stock biomass in 1998 relative to 1992, 
calculated using a SEP/L structural model in combination with various methods of estimating 
uncertainty. 
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Figure 11. Distributions for sardine spawning stock biomass in 1998, calculated using a VPA/F 
structural model in combination with various methods of estimating uncertainty. 
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Figure 12. Distributions for sardine spawning stock biomass in 1998, calculated using a SEP/L 
structural model in combination with various methods of estimating uncertainty. 
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Figure 13. Distributions for sardine spawning stock biomass in 1998, calculated using a SEP/M 
structural model in combination with various methods of estimating uncertainty. 
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Figure 14. Distributions for change in sardine spawning stock biomass in 1998 relative to 1992, 
calculated using a VPA/F structural model in combination with various methods of estimating 
uncertainty. 
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Figure 15. Distributions for change in sardine spawning stock biomass in 1998 relative to 1992, 
calculated using a SEP/L structural model in combination with various methods of estimating 
uncertainty. 
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Figure 16. Distributions for change in sardine spawning stock biomass in 1998 relative to 1992, 
calculated using a SEP/M structural model in combination with various methods of estimating 
uncertainty. 
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Figure 17. Distributions for plaice spawning stock biomass in 1998, calculated using a SEP/L structural 
model in combination with the Bayes method of estimating uncertainty. Details of the structural model 
and assumptions were altered. 
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Annex 1 

A potential problem for generating model conditioned nonparametric bootstrap 
sample replicates arises when dealing with data that are assumed to be multinomially 
rather than normally / lognormally distributed. Consider the case in which catch-at-
age data are included as one component of a likelihood function: 

, ,ˆny y a y a
y a

L C p p= −�� �     (A.1) 

where yC  is the total catch in number for year y, 

,y ap  is the observed proportion of the catch of age a during year y, and 

,ˆ y ap  is the model-estimate of the proportion of the catch of age a during 
year y. 

This equation is not of the form of a sum of squared residuals, so the typical approach 
of scaling weighted residuals cannot be applied exactly. However, it is possible to 
define a standardised residual of the form: 

, ,
,

, ,

ˆ
ˆ ˆ(1 )

obs
y a y a

y a
y a y a

p p
r

p p
−

=
−

    (A.2) 

‘Raw’ pseudo catch proportions-at-age are generated using the equation: 

,
, , , , ,ˆ ˆ ˆ(1 )raw B B

y a y a y a y a y ap p r p p= + −    (A.3) 

where ,
B
y ar  is a residual selected randomly from those defined in Equation (A.2). The 

‘final’ pseudo catch proportions-at-age are then determined by rescaling the ‘raw’ 
catch proportions-at-age so that the sum over age (within each year) of the ‘final’ 
pseudo catch proportions-at-age is 1, i.e.: 

, ,
, , , '

'

/B raw B raw B
y a y a y a

a
p p p= �    (A.4) 
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