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Abstract.- The performance of uncertainty estimation procedures was evaluated with respect to 
accuracy. A confidence statement is said to be accurate if the confidence point achieves the 
desired probability coverage. A Monte Carlo experiment with 100 trials was conducted with a 
�true� population that experienced contrast between low and high fishing mortality. 
Observations for the last 25 years were drawn stochastically by adding measurement error. The 
assessment approaches were VPA-based (ADAPT and XSA with errors on the effort data). The 
�Delta Method�, parametric bootstrap and non-parametric bootstrap (NPB), and a Bayesian 
approach were used to quantify coverage and assess the accuracy of confidence limits of 
estimated interest parameters (F0.1, SSB and TACF0.1 in year 26) by comparing against the �true� 
values. Variations of the Delta Method and bootstrap were used to account for statistical 
estimation bias. The results indicated that accurate inference statements are possible with the 
different approaches and that bias correction can improve accuracy when it can be applied. The 
bias-corrected Delta-ADAPT and bias-corrected NPB-ADAPT applications performed best. 
Inference statements about F0.1 were more accurate than those for SSB or TAC.  
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INTRODUCTION 
 
Before evaluating the performance of any uncertainty estimation procedure in real situations, it is 
a good idea to evaluate it in controlled experiments, as are afforded by Monte Carlo simulation 
studies. 
 
In this study we are interested in evaluating the accuracy of various estimation procedures given 
that the assessment method in which they are embedded make the same structural assumptions 
made in generating the simulated data. That is, we try to avoid confounding of these two 
potential sources of inaccuracy: the mismatch between assumed and real processes, and the 
intrinsic differences in uncertainty estimation procedures. Naturally, assumptions about the way 
the real world operates are a very important part of stock assessments and cannot be ignored in 
real applications, but our more narrowly-focused study should be a first step in this type of 
performance evaluation. 
 
One way of categorizing age-structured assessment methods in vogue today is as either admitting 
or ignoring measurement errors in catch-at-age observations. It is well known that the analysis of 
age-structured information is over-parameterized and both of these types of approaches aim to 
reduce the number of parameters to be estimated by making particular assumptions.  Methods 
that do not admit catch-at-age errors are sometimes called �VPA-based�. By not admitting catch 
errors, they greatly reduce the number of parameters that require estimation. Separable methods 
allow for the statistical modeling of the admitted error in the catch-at-age observations, thus 
increasing the number of data being �fitted� by the model, but reduce the number of estimated 
parameters by assuming that fishing mortality can be split into two-way age-specific and year-
specific components. The analyses conducted for this study are done with �VPA-based� methods 
only.  Although we did not examine separable-type models, testing based on these could be 
conducted in a similar fashion.  
 
METHODS 
 
Monte Carlo Test Procedure 
 
Our study examines the quality of inference statements judged with respect to accuracy. A 
confidence statement is said to be accurate if the confidence point achieves the desired 
probability coverage, [ ]( ) ααηη ≈≤ �Pr .  
 
To compare the accuracy of alternative methods of making inference statements, a Monte Carlo 
experiment with 100 trials was conducted. The specification of the simulation structure for this 
experiment is described below. Each of the data sets was analyzed using an assessment 
procedure that made the same assumptions made in generating the data. The �Delta Method�, 
parametric bootstrap and non-parametric bootstrap (NPB), and a Bayesian approach were used to 
quantify coverage and assess the accuracy of confidence limits of estimated interest parameters. 
 
The results from the Monte Carlo experiment can be used to quantify coverage and assess the 
accuracy of confidence limits. For example, under the frequentist paradigm, using a correct 
model we would expect 10 of the 100 cumulative frequency distributions to contain the �true� 
SSB between the 20th and 30th percentile confidence limits and similarly for each of the ten 
deciles from 0% to 100% (Figure 1). These same results can be plotted on a cumulative basis 
(Figure 1), in which case one would expect a straight line. 
 
Using an incorrect model for inference statements would result in patterns that would deviate 
from the straight lines shown in Figure 1. Differences in accuracy could be attributed to either 
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differences in the location of the point estimate with respect to the true value, or differences in 
spread, or both. Figure 2 depicts eight possible diagnostic patterns, labelled A to H. Note that in 
practice it may be difficult to distinguish the cause of patterns C, E or G based on these plots 
alone, because they all look similar. 
 
Dynamics of simulated population  
 
The dynamics for the stock have fixed growth, maturity and natural mortality: 
 

Length at age:  )1(100 15.0 a
a el −−=  

Weight at age: 300001.0 aa lw =  
(for the purpose of computing yield, mid-year weight computations are made, i.e. using 
[a+0.5]; for computing SSB, beginning of the year [a] is used) 

 M=0.2 for all ages, 1 to 15 (there is no plus group) 
 Proportion mature: 

0, a=1 to 4, 
0.3, a=5 
0.5, a=6 
0.7, a=7 
0.9, a=8 
0.95, a=9 
1, a=10 and older. 

 
The only stochastic process was in recruitment, which was governed by a Beverton-Holt 
relationship with a steepness of 0.7 having lognormal errors (CV=0.6) and following an AR(1) 
process with ρ=0.5.  The deterministic relationship was given by 
 

 
t

t
t SSB

SSBR 51 106621.567945.0 −+ ×+
= , 

 
which results in a virgin biomass of 100,000, and a maximum recruitment of 15,769. 
 
A single fleet with fixed selection pattern over time, 
 Sa = 0.05, 0.1, 0.3, 0.7, 0.9, for a=1 to 5 and Sa=1.0 for older ages, 
exploits the stock. Catchability was held constant and there were no stochastic components to the 
fleet dynamics. 
 
With the above parameters, the following reference points are estimated: 
 Fmax  0.335 
 F0.1   0.193 
 FMSY  0.166 
 Fcrash  0.473. 
 
Initially, the operating model was run until the population reached equilibrium at ½FMSY.  Then, 
over a 25-year period, the stock experienced a "2-way trip" to 2FMSY and back to ½FMSY.  The 
purpose of this was to allow substantial contrast in the data. 
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Observations used for model fitting  
 
For all 25 years, surveys (CPUE) indexing start of the year abundance for ages 1-15 were 
generated. These had lognormal errors with age-specific CVs ranging between 0.5 and 0.75 
(higher CVs for young and old ages, lower CVs for intermediate ages).  No survey data were 
produced for year 26. 
 
For testing of the VPA-based models, the true catch at age (ages 1-15, without a plus group) was 
used. 
 
 
Performance Statistics 
 
Although the individual assessment realizations generated a large number of outputs, we limited 
the analysis of results to the following three interest statistics: 
 

- SSB at start of year 26 (true = 31,801), 
- F0.1 (calculated using the estimated selectivity for year 25, true = 0.193), and 
- TAC in year 26 corresponding to the estimated F0.1 (true = 9,334). 

 
The rationale for selecting these three was the following: SSB is one of the population variables 
that is monitored in most assessments, as it indexes the reproductive potential of the stock at any 
one time. F0.1 is a biological reference point that is used as a target by various fishery 
management organizations. Lastly, the TAC corresponding to the target fishing mortality is the 
quantity that managers are ultimately interested in.  
 
Computation of the TAC in year 26 required a projection of recruits, which was fixed at zero for 
simplicity. 
 
Inference Methods 
 
We examined frequentist and Bayesian inference methods. Frequentist confidence distributions 
of interest parameters are derived from sampling distributions of their estimators (Efron 1998, 
Schweder and Hjort 1999) and represent the probability that the true value of the interest 
parameter (assumed to be a single valued constant) would be contained within the specified 
limits under repeated sampling. Bayesian posterior distributions of interest parameters are 
derived from a synthesis of the likelihood for the observed data and specified prior distributions 
for model parameters (Punt and Hilborn 1997) and represent the probability distribution of the 
interest parameter (assumed to be a random variable). Though the frequentist confidence 
distribution and the Bayesian posterior distribution have different interpretations, both are used 
in a similar way to support fisheries management decisions. For the purposes of evaluating 
accuracy, analysts provided the percentile in which the true value of the statistic (SSB, F0.1 or 
TAC) fell in each of the 100 trials. 
  
Various techniques have been devised to obtain inferences under the frequentist or Bayesian 
paradigms. The frequentist methods examined included Delta and bootstrap variants while 
Bayesian methods were based on numerical integration using either Sampling Importance 
Resampling (Rubin 1987) or Markov Chain Monte Carlo algorithms (Gilks et al. 1996). 
 
The Delta method is a technique for deriving approximate estimates of variance for complex 
model parameters and/or interest statistics. These estimates of variance may then be coupled 
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with some assumption about the sampling distribution of the model parameter or interest statistic 
to construct confidence distributions. 
The bootstrap is a data based simulation technique that can be used to obtain confidence 
distributions of interest parameters. The idea is to substitute a simple data based estimate for the 
sampling distribution of a parameter. Parametric variants of the bootstrap assume a parametric 
form of the distribution but obtain estimates of the defining parameters from observed data. Non-
parametric variants of the bootstrap use the observed data, or residuals about the model fit, 
directly to define the distribution completely. 
 
Sampling Importance Resampling and Markov Chain Monte Carlo are techniques for integrating 
over the posterior distribution of model parameters given the observed data. Sampling 
Importance Resampling uses an importance function of model parameters to obtain importance 
ratios that can be used as weights in resampling. In Markov Chain Monte Carlo, samples are 
drawn from required distributions, constructed using Markov chains for a long time, and 
averaged to approximate expectations. 
 
Fisheries assessment models involve relationships that are not linear in the model parameters and 
the interest parameters. Estimation for such models will result in confidence distributions or 
posterior distributions that are displaced. The frequentist notion associated with this 
characteristic is bias. Some adjustment for statistical estimation bias was attempted with several 
of the frequentist methods, and in those cases the results are presented separately. Bayesian 
analogues for adjustment of a displacement are not available. 
 
VPA-type Assessment Models 
 
 
Although VPA based methods succeed in reducing the number of parameters to be estimated by 
assuming that the error in the catch at age is negligible, experience has shown that further 
assumptions are often required to obtain reliable estimates of stock status. Two variants of VPA 
type methods are common. One imposes additional conditioning by constraining the oldest age 
fishing mortality to be equal to some function of fishing mortality for younger ages in the same 
year. The other imposes additional conditioning by constraining the index catchabilities to be 
equal over specified older ages. As indicated earlier, the intention was to apply assessment 
methods which made correct structural assumptions. For this simulation study, assessment 
methods were tailored to make the correct assumption that expected fishing mortality for age 15 
was equal to fishing mortality over younger ages, i.e. ages 6 - 14, in the same year. All index 
catchabilities for ages 1 - 15 were estimated independently without constraints. 
 
Additional structural assumptions required for the assessment model were made to be consistent 
with the operational model. The annual natural mortality rate, M, is assumed constant and equal 
to 0.2 over all ages and years. The errors in the abundance indices, Ia,y , are assumed independent 
and identically distributed with age specific variance across all years, 2

aσ , after taking natural 
logarithms of the values. The methods were tasked with estimating age-specific CVs (i.e. make 
the same structural assumption made during data generation, but were not given the true values 
to use as input). 
 
The F-constrained VPA assessments were carried out using either the ADAPT adaptive 
framework (Gavaris 1988) with various software implementations or the XSA extended 
survivors iterative algorithm (Shepherd 1999) as implemented in the Lowestoft assessment suite 
(Darby and Flatman 1994). It should be noted that there are differences in the implementation of 
various algorithms by different scientists (for instance in stopping criteria) which can lead to 
differences in the results that could complicate interpretation of results. We carried out simple 
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comparisons of the individual iteration results obtained with the various ADAPT and XSA 
implementations and found that, while differences existed, they were not substantial. 

ADAPT specification 
 
Model parameters: 

abundance population   2626, nNn a,a �� ==θ , ages a = 2 - 15 at the beginning of year 26, 
constantn calibratio   nqn aa �� ==κ , for ages a = 1 - 15. 

 
A weighted least squares solution for the parameters was obtained by minimizing the sum of 
squared differences between the natural logarithm of observed abundance indices and the natural 
logarithm of population abundance adjusted for catchability by the calibration constants: 
 

( ) ( )( )( )2

,
,,2

,

� � 
�
1�,� �Ψ +−=

ya
yaaya

aya
NnIn θκ

σ
κθ ��  

 
or equivalently, for the Bayesian methods, using the likelihood function: 

( )∏ −−∝
ya

yaaya NqnInDL
aa

,

2
,,)�(2

1
�
1 )] [exp(),|( 2 ��

σσκθ . 

 
At the beginning of year 26, the population abundance was obtained directly from the parameter 
estimates, 26,

�
26,

aeNa
θ= .  For all other times, the population abundance was computed using the 

VPA algorithm, which incorporates the common exponential decay model  
 

( )MF
yaya

yaeNN +−
++ = ,

,1,1  . 
 
The annual fishing mortality rate, yaF , , was obtained by solving the catch equation, 
 

( )( )
( )MF

eNF
C

ya

MF
yaya

ya

ya

+
−

=
+−

,

,,
,

,1
 . 

 
The fishing mortality rate for age 15 was assumed equal to the average for ages 6 - 14 during that 
time interval 
 

9
14

6
,,15 �

=

=
a

yay FF . 

 
The interest statistics, SSB26, F0.1 and TAC26 were subsequently calculated. 
 

�=
a

aaa NwmSSB 26,26  

where m is proportion mature at age and w is weight at age. 
 
F0.1 is the fishing mortality corresponding to one tenth the slope at the origin of the yield per 
recruit as a function of fishing mortality. Yield per recruit is 
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( )( )� +−= +−
+

a
a

MFPR
aaa MFPReFPRNwYPR a15.0   

where N1 is set to 1 and the partial recruitment to the fishery is derived from the estimated 
fishing mortality at age for year 25 

�
=

=
15

6
25 10

1
a

aa FFPR  

The TAC corresponding to F0.1 is 
 

( )( )� +−= +−
+

a
a

MPRF
aaa MPRFePRFNwTAC a

1.01.026,5.026
1.01  

 
Delta- ADAPT 
 
This implementation of the Delta method derives approximate estimates of variance for the 
interest parameters and couples that with an assumption about the parametric form of their 
sampling distribution to derive confidence distributions. The covariance matrix of the model 
parameter set, {θ,κ}  were estimated using the common linear approximation (Kennedy and 
Gentle 1980 p.476) 
 

( ) ( ) ( )[ ] 12 �,��,���,�cov
−

= κθκθσκθ JJ T  

where �σ 2  is the mean square residual and ( )J � , �θ κ  is the Jacobian matrix of the vector of 

residuals. The variance of an interest parameter, ( )κθη �,�� g=  where g is the transformation 
function, were estimated using the Delta approximation (Ratkowsky 1983): 
 

( ) ( )[ ]κθη �,�cov� TGGtrVar =   
 
where G is the vector of first derivatives of g with respect to parameters. Assuming a Gaussian 
distribution, confidence distributions of the interest parameters were approximated as  
 

( )( )ηη �,�~ VarN . 
 
As indicated above, estimation bias is expected. A bias adjusted Delta confidence distribution 
was constructed by shifting the Delta confidence distribution to account for the magnitude of the 
estimated bias and ignoring any increase in variance associated with the bias estimate. The bias 
of the model parameters was estimated using Box�s (1971) approximation, which assumes that 
the errors are normally distributed: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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�
�
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where ( )κθ �,�iJ  = ( )κθ �,�iJ ′  are vectors of the first derivatives for each residual and ( )κθ �,�iH  are 
the Hessian matrices of second derivatives for each residual. The bias of interest parameters is 
then derived using the method described in Ratkowsky (1983): 
 

( ) ( ) ( )[ ] 2�,�cov�,�� κθκθη WtrBiasGBias T +=  
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where W is the matrix of second derivatives of g with respect to parameters. Again assuming a 
Gaussian distribution, confidence distributions of the interest parameters were approximated as 

( ) ( )( )ηηη �,��~ VarBiasN − . 
 
PB-ADAPT 
 
This method is explained in Restrepo et al. (1992) and Mesnil (1995). The method requires 
externally provided CVs in order to generate replicates of the dataset. Here, the same CVs as 
those used in generating the artificial data sets were used.  
 
NPB-ADAPT 
 
Efron (1979) introduced the non-parametric bootstrap percentile method as a simple automatic 
data based technique to calculate confidence distributions for complex statistics. Let η  represent 
the interest parameter, (with estimate η� corresponding to the least-squares solution) . Its 
cumulative frequency distribution is derived from the bootstrap replicate estimates bη̂ . The 
replicates are computed by applying the estimation formulae to bootstrap samples. 
Nonparametric bootstrap replications are obtained when bootstrap samples are generated by 
random sampling with replacement from the observed data. Here we generated model-
conditioned bootstrap replications, which are obtained by sampling with replacement from all the 
observed abundance index residuals (nonparametric) and adding these to the model predicted 
values for the abundance indices. As the residuals were weighted by the inverse standard error at 
each age in the minimization objective function, the resampled weighted residuals used to 
construct the bootstrap samples were multiplied by the standard error before being added to the 
predicted index values. For the percentile method, the confidence distribution of the interest 
parameter is defined as the proportion of bootstrap replicates, bη̂ , less than or equal to that 

value, ( ) { } { }
B

xxx
b ≤=≤=Ω ηη

ˆ#ˆˆ Prob . 

 
The bias-corrected percentile method of Efron (1982), improves on the percentile method by 
adjusting for differences between the median of the bootstrap percentile density function and the 
estimate obtained with the original data sample. The confidence distribution of the interest 
parameter is obtained with the bias-corrected percentile method by constructing the paired 
values ( )αη ,� b

BC . The α are the respective probability levels equal to BBBBB 1,,3,2,1 −�  
where B is the total number of bootstrap replicates. For each α, calculate the bias adjusted 
quantity, ( )( )αη zzb

BC +ΦΩ= −
0

1 2�� . Here, Φ is the cumulative distribution function of a standard 

normal variate, ( )αα
1−Φ=z  and ( )( )η��1

0 ΩΦ= −z .  The term z0 achieves the bias adjustment.  

The notation ( )1� −Ω  or ( )1−Φ  is used to represent the inverse distribution function, i.e. the 
critical value corresponding to the specified probability level. Note that computations are not 
carried out for BB=α  because ( )11 =Φ= − ααz  is not defined. 
 
Bayes - ADAPT 
 
The priors for the ADAPT analysis are assumed to be: 
 

Parameter Prior distribution 
}15,..,3,2:{ ,26 =aaθ  U[-∞, ∞] 
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}15..,2,1:{ =aaκ  U[-∞, ∞] 
2
aσ  2

1
aσ

∝  

 

XSA Specification  
 
The design of XSA was intended to implement a q-constrained VPA estimation method. The 
default algorithm assumes that index catchability for the oldest age is equal to that for the next 
oldest age. For this study, the algorithm was modified to estimate catchability for all ages 
independently. XSA also estimates the survivors for all year-classes by default. However, an F-
constrained VPA can be mimicked through the shrinkage option. Shrinkage to the mean F was 
applied to the oldest age in all years other than the terminal year. The weighting for F shrinkage 
was derived assuming a standard error of 0.01. 
 
Observations from the CPUE series were weighted using inverse variances obtained for each 
age. The variances were derived from the standard errors of the log catchability which are 
assumed to be log normal. In addition the standard errors were assumed to have a minimum 
value of 0.3.  
 
Delta-XSA 
 
Numbers at age in the last data year are assumed to have a log normal distribution i.e. 
 

Ln Nmc ~ Ln N + D (0,σ2) 
 
where N is the XSA estimate of the survivors for a cohort. D(0,σ2) represents the normal 
distribution with unit mean and variance σ2 as derived from the XSA model. Within XSA two 
estimates of standard error are identified - �internal� and �external�. To be conservative the 
larger of the two values at each age was adopted as the estimate of variance.  Covariances are 
ignored. 
 
To estimate statistics of interest draws are made from the distributions of N. These Ns are then 
used to solve the catch equation using the given catches and natural mortalities. This ensures that 
fishing mortality is consistent with the observed catches. The parameters of interest, F0.1, SSB in 
the last year and the TAC in the year after the last data year are then derived using these 
simulated Ns and Fs. 

 
NPB-XSA 
 
The nonparametric bootstrap of XSA models uncertainty in the CPUE indices and hence other 
quantities of interest by performing a nonparametric bootstrap of the relationship between CPUE 
and population size. CPUE is transformed to relate the population abundance during the time at 
which the catch was taken to the population abundance at the beginning of the year. Time series 
weighting was not used so that the residuals were selected with equal probability. 
 
The bootstrap algorithm 
 
1) Run XSA and estimate log catchability 
2) Sample by year from the �log catchability residuals� within age and fleet with replacement  
3) Generate new CPUE indices 
4) Re-run XSA and generate statistics of interest 
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5) Repeat steps 2)-5) 
 
 
 
RESULTS AND CONCLUSIONS 
 
Figures 3-12 show the results obtained for the different procedures. Referring to Figure 2, the 
following patterns were observed in the results: 
 
 
Patterns in the results.A �+� denotes good performance; a �B� indicates that the parameter is 
overestimated - refer to Figure 2 for diagnostic patterns 

Method SSB F0.1 TAC 
Delta-ADAPT B + B 
Delta-ADAPT-BC + + + 
NPB-ADAPT B + B 
NPB-ADAPT-BC + + + 
PB-ADAPT B + B 
Bayes-ADAPT B + B 
Delta-XSA B + B 
NPB-XSA B + B 
    

 
 
The following table provides an indication of the accuracy with which the performance statistics 
were estimated. Each entry is the number of simulations out of 100 for which the true value was 
smaller than the estimated 50th percentile (i.e. entries equal to 50 indicate accurate results; higher 
values indicate over-estimation). 
   

Method SSB F0.1 TAC 
Delta-ADAPT 56 49 61 
Delta-ADAPT-BC 50 52 53 
NPB-ADAPT 71 45 71 
NPB-ADAPT-BC 51 51 54 
PB-ADAPT 68 52 74 
Bayes-ADAPT 57 54 66 
Delta-XSA 75 56 77 
NPB-XSA 59 59 63 
    

 
 
For these VPA-based methods, inference statements about F0.1 tended to be more accurate than 
those for SSB or TAC, which tended to be overestimated (except for bias corrected NPB-
ADAPT and bias corrected Delta-ADAPT applications).  
 
The Bias Corrected Delta-ADAPT and Bias Corrected NPB-ADAPT applications performed 
better than the others. Bias correction, when it can be applied, tends to help improve the accuracy 
of inference statements. 
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It is evident that accurate inference statements about some parameters can be obtained with the 
approaches examined here.   
Methods with bias correction appeared to perform well, but a troubling result is that the other 
methods overestimated SSB and TAC. These methods are in quite widespread use for advisory 
purposes. The results tabulated above imply that, for these data, choosing a TAC corresponding 
to the median, for example, could result in fishing mortality levels that exceed the target in about 
7 out of 10 cases (instead of the 50% intended by choosing the median). We do not know the 
degree to which this result can be generalized because we only examined one simulated 
population with a given trajectory and a given set of observation errors. It may be informative to 
repeat this exercise with different population trajectories to see what patterns emerge. 
Nevertheless, these simulations suggest that the magnitude of the bias can be of concern. 
 
As mentioned earlier, we conducted these tests ensuring that the structural models in the 
assessment procedures were specified in the same way as the simulated population was 
generated. We believe that the issue of model mis-specification needs to be confronted in studies 
of the type we have conducted here. However, the model components that can be mis-specified 
are numerous, making this an onerous exercise. 
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Figure 1. Example characterization of the results for a model with perfect accuracy. The left 
panel shows the cumulative number of simulation realizations resulting in a given true 
probability statement; the right panel shows the same information categorized in 10 intervals of 
equal size. 
 
 
 
 
 
 

Figure 2 (a). Example simulation results for methods that do not perform well. The text on the 
left of each pair of graphs explains the cause of inaccuracy, in terms of the location (µ) and 
dispersion (σ) parameters. 
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Figure 2 (b). Example simulation results for methods that do not perform well. The text on the 
left of each pair of graphs explains the cause of inaccuracy , in terms of the location (µ) and 
dispersion (σ) parameters. 
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Figure 3. Simulation results for Delta-ADAPT 
 

 
Figure 4. Simulation results for Delta-ADAPT, bias-corrected. 
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Figure 5. Simulation results for NPB-ADAPT. 
 

 
Figure 6. Simulation results for NPB-ADAPT, bias-corrected. 
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Figure 7. Simulation results for PB-ADAPT 
 
 

 
Figure 8. Simulation results for Bayes-ADAPT. 
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Figure 9. Simulation results for Delta-XSA. 
 

 
Figure 10. Simulation results for NPB-XSA. 
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