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Abstract 

Seasonal variations in specific density were measured for 

Thysanoessa inermis, Thysanoessa raschii, Meganyctiphanes 

norvegica, Calanus finmarchicus and Calanus hyperboreus. The 

density of a 20 mm - T .  inermis was lowest in December (1 ,052 g/sm3) 
3 and highest in February - March (1.065 g/cm ) .  For a 20 mm T, - 

3 raschii the minimal density was determined in December (1.059 g/em 1 
3 and the maximum in February - March (1.074 g/cm ) .  M. norvegica 

individuals og 35 mm also had their lowest density i December 
3 3 (1.000 g/cm ) ,  but reached their maximum density in July (1,076 g/cm ) .  

The density of the euphausiids is found to be size dependent. 

The density increases as the size decreases. 

C, finmarchicus and C. hyperboreus had densities less than seawater - 
3 (1.026 g/cm ) during most of the year. Just before spawning the 

density increased to 1 .O36 g/cm3 and 1 .O28 g/cm3 for C. finmarchicus 

and C. hyperboreus respectively. The seasonal variations of the 

density were closely related to the lipid content of the animals. 
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ENTRODUCTION 

The majority of secunaary production in the marine areas of the 

world is due to euphausiids (krili) and calanoid copepods 

(MAUCHLINE & FISHER 1967). This production forms the basis of the 

energy channelled onwards through the food-web to the major stscks 

of zooplanktivorous fish such as anchovetta, herring and capelin. 

Estimation of zooplankton abundance har been dependent on net 

sampllng, but the many disadvantages of this technique (CASSIE b967 

VANNUCEI 1969) have led to the development of remote acoustical 

sampling techniques (GREENLAW 1979, KRISTENSEN 1983). The major 

advantages of acoustic methods are their continous nature of 

observation to meet requiremencs of high sampling frequency, 

considerabie observation volumes and the possibiiity to make rapid 

in situ biomass estimates from large geographical areas. 
w- 

Two basic approaches can be used in acoustic estimacion of 
I / r q G , i  

zooplankton. In the flist one an empirical relation between and 

volume backscattering strength is used (PIEDER 1979, SAMEOTO 1980, 

FALK-PETERSEN and HOPKINS 1981). The other method is based on 

scattering models of the ~nvestigated zooplankton species. These 

models can be empirical or mathematical (ANDERSON 1950, JOHNSON 

1977, GREENLAW 1977, 1979, KRISTENSEN 1983, FALK-PETERSEN and 

KRISTENSEN 1983. The backscattering cross section predicted by 

these models is generally dependent of the acoustic frequency, 



the density contrast and the sound speed contrast between the 

organism and seawater. The physical shape of the organisms may 

also be introduced as a parameter, 

Little is known about densities of zooplankton (BEAMISH 1971, 

GREENLAW 1977, C U Z U K I  1979, KILIA§ 1979a), From the North- 

Atlantic no information is available, As the biochemical 

composition of zoo~lanltton is known to change during the year, 

density were measured for several suh-arctic zooplankton species 

over a yearcycle, 

In the present study the seasonal variation of the density are 

presented. The variation of the density is discussed in . 

relation to the biochemical content of the animals. 

MATERIALS AND METHODS 

Zooplankton was caught with a 1 m2 rectangular midwater trawl 

(rnesh size 1 mm) during 10 cruises with R.V.  ohan an ~ u u d "  in the 
Tromsø area (Northern Norway) between November 1982 and September 

1983. The zooplankton was kept alive in big seawater filled 

containers until the measurements took place. 

The density was determinded using a Pharmacia 5 0 / 1 0 0 0  water 

cooled column filled with sea water having a linear salinity 

gradient of 80 cm total height (fig.1). Each column was 

calibrated using a series of glass floats of precisely known 

density (Martin Instrument Company Ltd., Herts, England) (fig.2). 

To make a continious density scale over the whole column, the 

density of the floats was regressed on depth using a first order 

linear model. 

O The animals were anesthetized in a 60 100 saltwater solution. 

Immediately thereafter each specimen was identified, and the 

lenght was measured before it was brought into the column, 

The lenght of the euphausiids was defined as the distance from 



behind the eye to the end of telson. For the copepods the 

lenght was defined as the lenght of the abdomen. Only 

specimen positively evaluated to be clearly alive prior to the 

anesthetation activity was used in the experiments. The specific 

density was determined by the depth where the organisms reached 

neutral buoyancy, The density contrast was obtained by dividing 

the observed value by the specific density of sea water. 

RESULTS 

The densities of the investigated euphausiids are found to 

decrease linearily with increasing size, Table 2, 3 and 4. 

Both slope and intercept of the calculated regression equation 

changed during the year. To make comparisons possible between 

the estimated values the density of a reference-sized animal 

was calculated. As a reference size, 20 mm for the Thysanoessa 

m. and 35 mm for the - M. norvegica was chosen. (Fig.3). 

The density of T. inermis increased between November 1982 and 

March 1983 from 1 .O52 to 1 .O65 g/cm3 before decreasing again 

during spring and summer period. x. raschii showed similar 
variation, but the densities were higher than those of - T. inermis. 

The density of - T. raschii increased from 1 .O59 g/cm3 in Decernber 

1982 to 1 .O74 g/cm3 in March 1983 before decreasing to 1 .O56 g/cm 
3 

in September 1983. 

3 
M. norvegica als0 had its lowest density (1.060 g/cm ) in December - 

3 
1982, but did not reach its maximum before August 1983 (1.076 g/cm ) 

The density of C. finmarchicus and C. hyperboreus also varied 
with the season (fig. 4). It is interesting to note that most 

of the year Calanus spp. are slightly lighter than sea water. 

C. f inmarchicus had a density of 1 .O25 to 1 .O26 g/cm3 from May to - 
January, while C. hyperboreus had densities between 1.022 and 
1 .O25 g/cm3 in the same period. Only in March, just before 

spawning, both species had densities (respectively 1.029 and 
3 1.036 g/cm ) greater than sea water. 



DISCUSSION 

The mathematical models used in acoustical estimation of 

zooplankton are very sensitive to changes of density and 

contrasts (JOHSON 1977, GREELAW 1977, KRISTENSEN 1985). 

A one percent change thus parameters results in a 1.6 dB change 

of the backscattering cross section (KRISTENSEN 1983). 

The largest source of error in determining the density of 

zooplankton by the applied method was to locate the exact 

position of the specimen in the colum as the animals not 

always reached a complete neutral buoyance. The high sal- 

inities caused death and a subsequent increase in density 

of the krill was probably induced by osmotic processes. 

Before these happened the animals did however reach a re- 

latively stable position in the column, and this was mea- 

sured as the point of neutral buoyance. In addition the 

gradient is very small and a 20 mm error in depth reading 

lead to an unaccuracy of the calculated density of less than 

0.1%, i.e. a rather small error. (KRISTENSEN 1983). The 

difference in density between individuals of the same size was 

assumed to be due to differences in the biochemical composition 

among the organisms. The regression equations found for the 

densities of the euphausiids are therefore belived to express 

the mean density as a function of the size. The differences in 

density between the species, sizes and seasons is closly related 

changes in the lipid composition of the ivestigated species. 

T. inermis contains more lipids and lipids of lower density - 
(wax-esters), than - T. raschii wich contains mainly triacylglycerols 

( FALK-PETERSEN 1981, FALK-PETERSEN et al. 1981). It has also 

been shown that the lipid content is higher in large krill than 

in small krill (FALK-PETERSEN 1981). This will contribute to 

the observed in density with increasing length. The seasonal 

variations in density correspond with changes of the lipid 

composition of the investigated zooplankton species as described 

by FALK-PETERSEN 1 981 ) , FALIZ-PETERSZN el al 1 981 , and SARGEN'T 
et al. (1985). 



GREENLAW ( 1  977) calculated a. mean density of 1 .O63 g/cm3 for 

Euphausia pacifica of 19-23 mm total length, and BEAIbIISH (1971) 

reported a density of 1 .O5 g/crn3 for Euphausia sperba. As 

season and size dependency o4 these values should also be taken 

into account, it is difficult to make a direct comparison with 

our results. KIILS (1979b) alco found a length density relation 

for - 24. norveqica., but in contrast to our observations, he found 

the density to increase with increasing size. He calculated 

the density in January for a referece size animal (35 rrim) to 
3 3 1.057 g/cm . This is lower than our observation, 1.067 g/cm . 

These differences might be due to different composition of the 

animals, and the fact that he used nitrogen frozen krill while 

we used living animals. 

C. finmarchicus and C. hyperboreus have densities of less than - 
1 .O26 g/cm3 from June to January. Only in February these two 

species had higher densities than sea water. This means that 

both species have a slightly p~sitive buoyance most of the year. 

This contradicts with observations of GREENLAW (1979) who found 

a density of 1 .O43 glcm' for Acartia clausi and C. marshalle. 
The diiference can probably be explained by changes in the 

lipid levels. 

The observed seasonal changes of the density contrats of zoo- 

plankton are of surch magnitudec that when a mathematical 

model is used for acoustic estimation of zooplankton 

undances, the parameters of this model should be tuned for the 

actual seasons. The densities of the euphausiids are also so 

strongly size dependent that the relevant parameters of the 

model should reflect this. 
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Table 2. Thysanoessa enermis. Specific density (s) and density 

contrasts (g). Linear regression between densityldensity contrasts, 

Y, and length (L); Y = aL ? b, b = regression coeffisient, a = 

intercept and r = correlation coeffisient. 

3 Date Number Range (mm) Density (glcm ) Density contrast (g) 

b a r b a 



TabLe 3, raschii, Specific density (sl and density 

contrast (g). Lineas regression between densityldensity 

contrast, Y, and Length (L); Y = aL + b, b = regression 

coefficient, a = intercept and r = correlation coeff- 

icient. 

--- 
3 Date Number Range (mm) Density (glcm ) Density contrast (g) 

b a . 1 ~ - 3  C b a . ~ ~ - 3  

Table 4, Meganyctiphanes norvegica. Specific density (s) and 

density contrasts (g). Linear regressions between 

density/d,-nsity contrasts, - Y, and length (L); Y = 

aL + b, b = regression coeffisient, a = intercept 

and r = correlation coefficient, 

------- - 
3 Date Nurnber Range (mm) Density (glcm ) Density contrast (g) - - 



FIGURS 

Fig.1, The water cooled density gradient column with the 

filling ellvice. 

Fig.2. Density of the calibrated glass floats. 

Fig.3. The seasonal variation in density of a standard 

sized animal. Thysanvessa mermis, T. raschii (20 mm), 
Meganyctiphanes norvegica (35 mm). 

Fig.4. The seasonal variation in density of Calanus 

finmarchicus and C. hyperboreus. 
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