Thisheriourektoratet ABiblioteket

This paper not to be cited without prior reference to the authors

International Council for the Exploration of the Sea
C.M. 1976/B: 37

Gear and Behaviour Committee Ref. Pelagic Fish (Northern)

Committee

TARGET STRENGTH MEASUREMENTS AND ACOUSTIC BIOMASS ESTTMATION OF CAPELIN AND OmGROUP ETSH

by
John Dalen, Askjell Raknes and Ingolf Rottingen Institute of Marine Research. Bergen

INTRODUCTION

Echo integration is now widely used to obtain estimates of abundance of fish populations (THORNE et al 1971, JOHANNESSON and LOSSE 1973, MIDTTUN and NAKKEN 1973 among others). Eariier estimates have mostly been worked out under the assumption that the scattering cross section of the fish is proportional to its weight (URICK 1967). This assumption introduces a bias which is dependent on the size distribution of the fish (NAKKEN 1975) . However, this is overcome if one introduces a length dependent scattexing cross section (BUZETA and NAKKEN 1975. NAKKEN and DOMMASNES 1975).

At Institute of Marine Research acoustic biomass estimation of the stock strength of capelin has been carried out in September October each year since 1971 and in June auly since 1973. The echo integration system applied during these cruises together with the results are given in NAKIEN \& DOMMASNES 1975. The 1ast
 and SMEDSTAD, in press). Back scattering properties of capelin were not known, and it has hitherto besm assumed that the dependency of the density coerficient (C) on fish Longth for capelin was similar to that of spxat. Back seathexing data for sprat are given in NAKKEN and OLSEN (1973).

During late summer and early autumx Ongrour fust of many species occur pelagically in the Barexts Sea. Knawhedge of the prem recruitment stock is essential in attempts to predict and control fisheries, and the advantage of krowing yearemase wtrongth for all species in a region betore they are subfact wo firishing is obvious (DRAGESUND 1971). However the Mrowledere is in the Barents Sea area so far Ifmited to mel atryeyalues (abundance indices) for each species each year (ANon 1975).

The method of obtaining these indides has diproved. At present, a method described by HAUG and NAKKEN (197\%) is ased. Here a certain number of fish of each spectes jor the trawl catch is used to discriminate between axeas of seattened and dense conm centrations But information on the contrebutions to the total biomass from diferent species can only to a small extent, be extracted from the abundance indices velues.

The aim of the present paper is to gite juformation on the back scattering properties of some pelagic and Omgroup fish in the Barents Sea, in ordex to improve the acoustic biomass estimations of the above mentioned categories of fishes.

METHODS

Experimental seturp

The work took place in a sheltered bay at Skogergyap South Varanger in Finmmaxk.

An anchored ship with a rift alongside the ahip constituaed the power station, the laboratony and the acconodation facilities (Fig. 1).

The upward looking transducers were mounted in toaded aluminum frame submerged from the raft in adjustable wires. The fish was kept in an upside down position by a small float attached to the fish belly in the central part of the sound beam by a suspension of thin nylon gut. A hoisting device made it possible to hook the fish to the suspension at the surface and then lower it to the measuring position at 2.5 m depth (Fig. 1).

The aspect angle of the fish could be continously changed in the pitch plane. The fish was automatically tilted between -45° and $+45^{\circ}$ to the horizontal. The overall accuracy was found to be $\pm 2^{\circ}$ with the worst case of deviation to be 45°.

The equipment was calibrated three times during the field period by means of a hydrophone. To check the short time variations of the performance, three or four daily calibrations were carried out by measuring the target strength of a rigid steel sphere, 5 cm in diameter, that was lowered into the actual position.

Each fish to be measured was killed by hitting the frontal part of the brain by a sharp tool. When suspending the fish, care was taken to avoid air in gills and stomach. The measurements started immediately after the fish had reached the measuring position if no other fishes were in the close neighbourhood. Wild fish within the sound beam were however often a problem which caused conth siderable delays in the experiments.

Instrumentation

Fig. 2 shows a block diagram of the instrumentation which also listed below.

Echosounder EK 38 A.
Echosounder EK 120, A,
Transducer, 38 kHz , dim. $10 \times 10 \mathrm{~cm}$ Transducer, 120 kHz , dim. $\varnothing 5 \mathrm{~cm}$ Trigger (electronic)
Tiltangle indicator and control, sensor and motor

SIMRAD A/S
SIMRAD A/S
SIMRAD A/S
SIMRAD A/S
Institute of Marine Research

Institute of Marine Research

Oscilloscope Dual trace 1217 B
Echo Integrator QM II
Recorder 7702 B
Signal generator Model 116
Signal generator PF 1.101
Frequency counter 5306 AM. meter/counter
Electronic voltmeter Model 2606
Hydrophone LC 32

Hewlett - Packard
SIMRAD A / B
Hewlett a Packard
Wavetec
Macconi

Hewlett - Packard
Eruel \& Kjær
Atlantíc Research

The transmitted pulselengths were 0.6 ms for both sounders. The sounding repetition was approtimately 3.4 pulses per second (200 pulses pex minute).

Data processing

The information recorded on paper consists of signal voltage amplitudes as function of frequency, tiltangle, aspect, species and size.

During the analysis the following parameters were to be read (R) and calculated (C) from each fish, species and aspect.

L (R) : Fish Length (cm)
U (R) : Maximum observed voltage amplitude (V)
FV (R) : Interval of tiltangle within which TS \geq TS max 6 dB (degrees)
$T_{\text {max }}(C)$: Maximum observed target strength

Target strength, TS, was calculated from the following equation

$$
\begin{equation*}
\mathrm{TS}=20 \log \frac{U}{U_{r}}+\operatorname{TS}_{x} \tag{1}
\end{equation*}
$$

where U is observed voltage amplitude, U is the observed voltage amplitude from the reference sphere which has the target strength TS r . TS_{r} is 38.1 dB at ideal conditions which was the value used in (1)。

RESULTS

Besides values of the target strength it is of importance to find the dependency between target strength and length of the fish. To establish this we assume a linear relation between target strength and the logarithm of the fish length, that is

$$
\begin{equation*}
T S=m \log L+b \tag{2}
\end{equation*}
$$

m and b are determined by linear regression analysis.

It was originally planned to measure target strength of all length groups of capelin. However, due to difficulties in catching and transporting the smaller capelin from the fishing grounds in the Barents Sea south to the measuring site at Varanger, target strength measurements could only be made for length groups 13 cm to 18 cm . This was considered to few data to apply a linear regression, and it was decided to combine these data with prew viously measured target strength data from other fish of the order Clupeiformes. Pertinent data for following species of Clupeiformes were included.

	Species	Reference
Capelin	(Mallotus villosus)	(present measurements)
Herring	(Clupea harengus)	NAKKEN \& OLSEN(1973)
Salmon	(Salmo salar)	ROTTINGEN, unpublished
Sprat	(Sprattus sprattus)	NAKKEN \& OLSEN (1973)

These data have been combined and plotted in Fig.3, and results from the linear regression are shown in Table 1.

The observations and the results of the linear regression for cod (Gadus morhua), saithe (Pollachius virens) and sand eel (Ammodytes sp.) are shown in Figs. 4, 5 and 6, and Table 2.

Target strength measurements of 10 specimens of haddock (Gadus aeglefinus) were made NAKKEN and OLSEN (1973) also measured target strength of haddock (15 specimens) but the measurements were only published as mean values (Table 3. NAKKEN and OLSEN 1973) because they felt the observations to few to make a linear regression. Fig. 7 and Table 2 combine the present measurements of haddock with those of NAKKEN and OISEN (197\%).

Fig. 8 shows the relation between moximum dorsal aspect target strength and mean angle between points of half maximum amplitude (6 dB points) for cod, haddock and saitho.

DISCUSSION

We would like to pay some specific attention to how to reduce the data by linear regression analysis $\dot{\text { to }}$, what regression to use (RICKER 1973). In order to make a deejsion one should discuss;

> 1 what kind of variability and error which are \quad involved in the variates,
> 2 what distributions the variates make,
> 3 what has the sampling method been and
> 4 is the regression used ro describe a relationship, or to make predictions, or both.

Most of the variability in target strengthwlength observations we find to be inherent in the material more than in the process itself of measuring length and measuring and ealculating target strength.

The observations are from a norimandom sample which forms an open-ended nonwnormal distribution.

Primarily the regressions are needed to decribe a certain relationship, secondarily however, they will be used to predict target strength from length observations.

These statements lead to the conclusion that functional regression (least geometric mean regression) is preferable to predictive regression (least mean square regression). The functional
regression represents the line which minimizes the sum of the products of the vertical and horizontal distance of each point from the line. The slope of the line is

$$
\begin{equation*}
v= \pm \sqrt{\frac{\sum y^{2}}{\sum x^{2}}} \tag{3}
\end{equation*}
$$

Dra and y represent the quantities as measured from their means,
 i.e. $x=X-\vec{X}$ and $y=Y=\vec{Y}$. aseabroxa

कीt NAKEN (1975) shows that observations of maximum dorsal aspect

target strength can be used to obtain reliable ratios of echo intensity between species and length groups. MUMCam

The dorsal target strength is

$$
\begin{equation*}
T S_{\text {max }}=m \log L+b \tag{4}
\end{equation*}
$$

Or applied for the density coefficient (NAKKEN 1975)
wachord

$$
\begin{equation*}
C=C_{I} \cdot C_{s} \cdot L^{\frac{-m}{10}} \tag{5}
\end{equation*}
$$

 C_{I} is a instrument constant and C_{s} is a constant for a given species.
(a)

Unfortunately the data obtained during the present measurements nfrere to few to give length dependency of the density coefficient based on data from capelin only. However, the capelin belongs systematically to the order clupeiformes, and in general, with the exception of certain deep-sea species (MARSHALL 1960),
 osseous bone tissue, intermuscular bones, comparatively manys vertebrae, fins without spines and cycloid scales, Clupeiform fish therefore have common structural components that are acoustically important, and one feels that this justifies treating the acoustic data for several Clupeiformes together. The obtained values of m for a number of species of 0 agroup fish are listed in Table 2. The value for cod shows a decrease in dB/decade compared to that of larger fish measured by NAKKEN and OLSFN (1973), while the value for saithe shows a increase in dB/decade.

It is: well known (LOVE 1971. SHIBATA 1970) that there is a ohange in the directional reflection of fish as the fish size, or ather L/ λ (where L is fish length and λ is wavewength), decreases. There will be a reduction in the number of lobes, and consequently (F) an increase of the FV-angle Fig. 8 shows the relation between maximum dorsal aspect target strength and the angle between the

6 dB points in the directivity pattern for the measured cod and saithe. The relations found by NAKKEN and OLSEN (1973) are also indicated. The angle between the 6 dB points for cod increases with decreasing fish size, (or decreasing L / λ), for saithe the angle does not seem to exceed 25°. This may be due to different structure and reflecting properties of the swimebladders of cod versus that of saithe, a phenomenox already indicated by MIDTTUN and HOFF (1962) and MIDTTUN and NAKEEN (1971) The tilt angle distribution will thus be of greater importance in abundance estimation of Ongroup saithe than for Omgroup cod.

Abundance estimation

When different categories of fish ine sige groups and species are mixed and thus simultaneously contribute to the echo, then the integrated echo intensity M can be written
$M=M_{11}+M_{12}+0+M_{1 n}+M_{21}+M_{22} \cdots+M_{2 n}+\cdots+M_{p 1}+\ldots+M_{p n}$
M_{11} is the contribution to the integrated echo intensity from length group 1 of species $1, M_{2}$ is the contribution from length group 2 of species 1 and so on, altogether n length groups from each of the p species. We must assume that frequent sampling; usually with a pelagic trawl, shows the true density ratios between different length groups axd species. Following NAKKEN and DOMMASNES (1975):

$$
\begin{equation*}
k_{a i}=\frac{\rho_{A}}{\sum_{a i}} \frac{n}{\sum_{a}} \rho_{A_{a i}} \tag{7}
\end{equation*}
$$

$k_{\text {ai }}$ is the proportion of the length group of species of the total catch, (Total n length groups from each of p species) and ${ }^{\rho} A_{a i}$ is the density per unit area of that particular category of fish.

Further

where $C_{\text {ai }}$ is the density coefficient for length group i of species a.

The relationship between the fish density and integrated echo intensity is linear below a certain density (HMORNL and moder 1970, MIDTTUN and NAKKEN 1973, ROTTTNGTN in press.). This leads to:

$$
\rho_{\text {ai }}=k_{a i} \frac{}{\sum^{p}} \frac{M}{\sum^{n}} \frac{k_{a i}}{\mathrm{C}_{a i}}
$$

By applying this method absolute fish density can be calculated for the different species where the dencity coefilicients are known (eq. 5, Table 1 and 2).

Table 1. Functional regression (TS max $\left.=1 g_{10} L+b\right)$ for Clupeiformes for frequencies 38 kHz and 120 kHz m) calculated slope, b) comstant of regression, r) correlation coefficient, N) number of fish measured.

Frequency $\mathrm{kH}_{\mathbf{z}}$	N	m	b	$\underline{\sim}$
$\begin{array}{r} 38 \\ 120 \end{array}$	$\begin{array}{r} 103 \\ 83 \end{array}$	$\begin{aligned} & 19.1 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 64.0 \\ & 62.7 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.90 \end{aligned}$

Table 2. Calculatod slope (m) and constant (b) of regression lines, $T S=m \log _{10} L+b$, the comelation coefficient (x) and the number of eish measured (N).

Species	Frequency kHz	N	m	b	x	Length range measured (cm)
Cod	38	32	21.9	63.5	0.81	$4.7-20.5$
	120	7	39.4	$8 \% .1$	0.90	$9.0-16.5$
Saithe	38	25	37.1	78.0	0.94	$7.1-14.5$
	120	11	34.8	78.6	0.84	$7.1-14.5$
Haddock	38	24	18.7	59.4	0.95	7.2-48.0
	120	20	28.9	74.0	0.97	7.6 .48 .0
Sand eel	38	22	45.5	97.1	0.60	$9.2-18.5$

REFERENCES

ANON. 1975. Report of a meeting to consider young fish इtheys. Coop.Res.Rep.Ser,A. int.Coun.Explor.Sea, 52: 1-37.

BUZECA, R, and NAKKEN, 0. 1975. Abundance estimates of the spawning stock of blue whiting (Micromesistius poutassou (Risso, 1810)) in the area west of the British Isies in 1972*19\%4. FiskDir.Skr.Ser. HavUnders. 16: 245-257.

DALEN, J., HYLEN, A. and SMEDSTAD, 0.1976 . Acoustic abundance estimates of cod and haddock in the Barents Sea in February 1976. (In press).

DRAGESUND, O. 1971. Comparative analysis of yearaclass strength among fish stocks in the North Atlantic. FiskDir. Skr,Ser.HavUnders., 16: 49-64.

FAHLEN, G. 1967. Morphological aspects on the hydrographic function of the gas bladder of Clupea harengus L. Acta.Univ.Lund. II(1): Ias49.

FAHLEN, G. 1968. The gas bladder as a hydrostatic organ in Thymallus thymallus L_{0} Osmerus esperlanus L and Mallotus villosus Mull. FiskDixoSkr.Ser.HavUnders. 14: 199-228.

HAUG, A, and NAKKEN, O. 1973. Echo abundance indices of O-group fish in the Barents Sea 196501972 . Int.Coun. Explor. Sea Symp.Acoustic Methods in Fisheries Research. Bergen 1973 (26): 1. 13. [Mimeog]

JOHANNESON, K.A. and LOSSE, G.F. 1973. Some results of observed abundance estimates in several UNDP/FAO resource survey projects. Int.Coun。Explor.Sea Symp.Acoustic Methods in Fisheries Research. Bergen 1973 (3): 1.77. [Mimeo]

LOVE, R.H. 1971. Dorsal aspect target strength of an individual fish. J.Acoust.Soc.Am, 42: 816-823.

MARSHALL, N.B. 1960. Swimbladdex stamature of deapmsea fishes in rejation to thein gystamatics and biology. Discovery Reg. 31 : 1 I2\%.

MIDTTUN, L and HOFF, I. 1962. Measuremerte of xerlection of sound by fish. FishDtrs Skr. SexdHevUnderse, 13: $1-18$.

MIDTTUN, L, and NAKKEN, O. 197, Ori acotatio identification, sizing and abundance estrmation of tish. FiskDir.

MIDTTUN, L. and NAKKEN, O. 1973. Some xesults or abundance estimation sturies whth echo integretors. Int.Coun. Explor, Sea Symp, Acophtat Methods in Pisheries Researcho Berger 197\% (38): heno. [Mmeod]

NAKKEN, 0. 1975. On the problew of determining the relationship between intograted eobo hntengity and fish density. Coun.Meet. Int. Coun. Exprow.Seag 1925 (B:26): 1.8. Mimeo.]

NAKKEN, O, and DOMMASNES: A. 1975. The applicotion of an echo integration in thessticethons or the stock strength of the Baments See capeltr Mallotus villosus,
 1975 (B:25): 1843. M1moo.

NAKKEN, O, and OLSEN, K. 1973. Target strength measurements of Fish. Int Coum ExploreSea SympeAcoustic Methods in Fisheries Research. Mergen 1973 (24): 1-33. [Mimeo.]

RICKER, W。E, 1973. Linear regression an finhery research. JoFish.Res.Board Can. $70: 409 \times 434$.

RØTTINGEN, I. 1976. On the relation between echo intensity and fish density FiskJiw, Sles.Ser, HavUndexs.g (in press)。

SHIBATA, K. 1970, Study on detadis of ultrasonte refluction from individual fishe Buly, Fac.Fish.Negasaky Univ. 29: 1 an 82.

THORNE, R,E, and WOODEY, $J_{0} \mathrm{C}_{0} 1970,540 \mathrm{k}$ assescment by echo integration and its appheation to juvenile Sockeye salmon in Lake Washdngton. Univo of Wash. Coll. Fish, Cixcaler ros 70 wo 1970.

THORNE, R.E., REEVES, J.E. and MILLJKAN, A.E. 1971. Estimation of the Lake population in Port Susan, Washington, using an echo integrator. J,Fish.Res.Board Can. 28 (9): 1275-1284.

URICK, R.J. 1967. Principles of underwater sound for engineers. Mc GrawmHill Book Company. New York. 342 p.

Fig. 1. Experimental set-up vessel, raft, framemounted transducers and surpension arrangement.

Fig. 2. Composition of instruments.

or ve de

Fig. 3. Maximum dorsal target strength versus length of Clupeiformes. 1) Herring, 2) Salmon, 3) Sprat and 4) Capelin. Observed values and regression line。

Figure 7. Maximum dorsal target strength versus length of haddock. Observed values and regression line.

Fig. 8. Corresponding values of maximum dorsal target at 38 kHz strength and angel between point of hālł"-maximum amplitude (6 db points).

1) cod, 2) saith, 3) and 4) cod and saithe (NAKKEN and OLSEN 1973).
